Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj976 Structured version   Visualization version   GIF version

Theorem bnj976 30102
 Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj976.1 (𝜒 ↔ (𝑁𝐷𝑓 Fn 𝑁𝜑𝜓))
bnj976.2 (𝜑′[𝐺 / 𝑓]𝜑)
bnj976.3 (𝜓′[𝐺 / 𝑓]𝜓)
bnj976.4 (𝜒′[𝐺 / 𝑓]𝜒)
bnj976.5 𝐺 ∈ V
Assertion
Ref Expression
bnj976 (𝜒′ ↔ (𝑁𝐷𝐺 Fn 𝑁𝜑′𝜓′))
Distinct variable groups:   𝐷,𝑓   𝑓,𝑁
Allowed substitution hints:   𝜑(𝑓)   𝜓(𝑓)   𝜒(𝑓)   𝐺(𝑓)   𝜑′(𝑓)   𝜓′(𝑓)   𝜒′(𝑓)

Proof of Theorem bnj976
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 bnj976.4 . 2 (𝜒′[𝐺 / 𝑓]𝜒)
2 sbcco 3425 . 2 ([𝐺 / ][ / 𝑓]𝜒[𝐺 / 𝑓]𝜒)
3 bnj976.5 . . 3 𝐺 ∈ V
4 bnj252 30022 . . . . . 6 ((𝑁𝐷𝑓 Fn 𝑁𝜑𝜓) ↔ (𝑁𝐷 ∧ (𝑓 Fn 𝑁𝜑𝜓)))
54sbcbii 3458 . . . . 5 ([ / 𝑓](𝑁𝐷𝑓 Fn 𝑁𝜑𝜓) ↔ [ / 𝑓](𝑁𝐷 ∧ (𝑓 Fn 𝑁𝜑𝜓)))
6 bnj976.1 . . . . . 6 (𝜒 ↔ (𝑁𝐷𝑓 Fn 𝑁𝜑𝜓))
76sbcbii 3458 . . . . 5 ([ / 𝑓]𝜒[ / 𝑓](𝑁𝐷𝑓 Fn 𝑁𝜑𝜓))
8 vex 3176 . . . . . . . 8 ∈ V
98bnj525 30061 . . . . . . 7 ([ / 𝑓]𝑁𝐷𝑁𝐷)
10 sbc3an 3461 . . . . . . . 8 ([ / 𝑓](𝑓 Fn 𝑁𝜑𝜓) ↔ ([ / 𝑓]𝑓 Fn 𝑁[ / 𝑓]𝜑[ / 𝑓]𝜓))
11 bnj62 30040 . . . . . . . . 9 ([ / 𝑓]𝑓 Fn 𝑁 Fn 𝑁)
12113anbi1i 1246 . . . . . . . 8 (([ / 𝑓]𝑓 Fn 𝑁[ / 𝑓]𝜑[ / 𝑓]𝜓) ↔ ( Fn 𝑁[ / 𝑓]𝜑[ / 𝑓]𝜓))
1310, 12bitri 263 . . . . . . 7 ([ / 𝑓](𝑓 Fn 𝑁𝜑𝜓) ↔ ( Fn 𝑁[ / 𝑓]𝜑[ / 𝑓]𝜓))
149, 13anbi12i 729 . . . . . 6 (([ / 𝑓]𝑁𝐷[ / 𝑓](𝑓 Fn 𝑁𝜑𝜓)) ↔ (𝑁𝐷 ∧ ( Fn 𝑁[ / 𝑓]𝜑[ / 𝑓]𝜓)))
15 sbcan 3445 . . . . . 6 ([ / 𝑓](𝑁𝐷 ∧ (𝑓 Fn 𝑁𝜑𝜓)) ↔ ([ / 𝑓]𝑁𝐷[ / 𝑓](𝑓 Fn 𝑁𝜑𝜓)))
16 bnj252 30022 . . . . . 6 ((𝑁𝐷 Fn 𝑁[ / 𝑓]𝜑[ / 𝑓]𝜓) ↔ (𝑁𝐷 ∧ ( Fn 𝑁[ / 𝑓]𝜑[ / 𝑓]𝜓)))
1714, 15, 163bitr4ri 292 . . . . 5 ((𝑁𝐷 Fn 𝑁[ / 𝑓]𝜑[ / 𝑓]𝜓) ↔ [ / 𝑓](𝑁𝐷 ∧ (𝑓 Fn 𝑁𝜑𝜓)))
185, 7, 173bitr4i 291 . . . 4 ([ / 𝑓]𝜒 ↔ (𝑁𝐷 Fn 𝑁[ / 𝑓]𝜑[ / 𝑓]𝜓))
19 fneq1 5893 . . . . . . 7 ( = 𝐺 → ( Fn 𝑁𝐺 Fn 𝑁))
20 sbceq1a 3413 . . . . . . . 8 ( = 𝐺 → ([ / 𝑓]𝜑[𝐺 / ][ / 𝑓]𝜑))
21 bnj976.2 . . . . . . . . 9 (𝜑′[𝐺 / 𝑓]𝜑)
22 sbcco 3425 . . . . . . . . 9 ([𝐺 / ][ / 𝑓]𝜑[𝐺 / 𝑓]𝜑)
2321, 22bitr4i 266 . . . . . . . 8 (𝜑′[𝐺 / ][ / 𝑓]𝜑)
2420, 23syl6bbr 277 . . . . . . 7 ( = 𝐺 → ([ / 𝑓]𝜑𝜑′))
25 sbceq1a 3413 . . . . . . . 8 ( = 𝐺 → ([ / 𝑓]𝜓[𝐺 / ][ / 𝑓]𝜓))
26 bnj976.3 . . . . . . . . 9 (𝜓′[𝐺 / 𝑓]𝜓)
27 sbcco 3425 . . . . . . . . 9 ([𝐺 / ][ / 𝑓]𝜓[𝐺 / 𝑓]𝜓)
2826, 27bitr4i 266 . . . . . . . 8 (𝜓′[𝐺 / ][ / 𝑓]𝜓)
2925, 28syl6bbr 277 . . . . . . 7 ( = 𝐺 → ([ / 𝑓]𝜓𝜓′))
3019, 24, 293anbi123d 1391 . . . . . 6 ( = 𝐺 → (( Fn 𝑁[ / 𝑓]𝜑[ / 𝑓]𝜓) ↔ (𝐺 Fn 𝑁𝜑′𝜓′)))
3130anbi2d 736 . . . . 5 ( = 𝐺 → ((𝑁𝐷 ∧ ( Fn 𝑁[ / 𝑓]𝜑[ / 𝑓]𝜓)) ↔ (𝑁𝐷 ∧ (𝐺 Fn 𝑁𝜑′𝜓′))))
32 bnj252 30022 . . . . 5 ((𝑁𝐷𝐺 Fn 𝑁𝜑′𝜓′) ↔ (𝑁𝐷 ∧ (𝐺 Fn 𝑁𝜑′𝜓′)))
3331, 16, 323bitr4g 302 . . . 4 ( = 𝐺 → ((𝑁𝐷 Fn 𝑁[ / 𝑓]𝜑[ / 𝑓]𝜓) ↔ (𝑁𝐷𝐺 Fn 𝑁𝜑′𝜓′)))
3418, 33syl5bb 271 . . 3 ( = 𝐺 → ([ / 𝑓]𝜒 ↔ (𝑁𝐷𝐺 Fn 𝑁𝜑′𝜓′)))
353, 34sbcie 3437 . 2 ([𝐺 / ][ / 𝑓]𝜒 ↔ (𝑁𝐷𝐺 Fn 𝑁𝜑′𝜓′))
361, 2, 353bitr2i 287 1 (𝜒′ ↔ (𝑁𝐷𝐺 Fn 𝑁𝜑′𝜓′))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  Vcvv 3173  [wsbc 3402   Fn wfn 5799   ∧ w-bnj17 30005 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-fun 5806  df-fn 5807  df-bnj17 30006 This theorem is referenced by:  bnj910  30272  bnj999  30281  bnj907  30289
 Copyright terms: Public domain W3C validator