Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj944 Structured version   Visualization version   GIF version

Theorem bnj944 30262
 Description: Technical lemma for bnj69 30332. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj944.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj944.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj944.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj944.4 (𝜑′[𝑝 / 𝑛]𝜑)
bnj944.7 (𝜑″[𝐺 / 𝑓]𝜑′)
bnj944.10 𝐷 = (ω ∖ {∅})
bnj944.12 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
bnj944.13 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
bnj944.14 (𝜏 ↔ (𝑓 Fn 𝑛𝜑𝜓))
bnj944.15 (𝜎 ↔ (𝑛𝐷𝑝 = suc 𝑛𝑚𝑛))
Assertion
Ref Expression
bnj944 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝜑″)
Distinct variable groups:   𝐴,𝑓,𝑖,𝑚,𝑛   𝑦,𝐴,𝑓,𝑖,𝑚   𝑅,𝑓,𝑖,𝑚,𝑛   𝑦,𝑅   𝑓,𝑋,𝑛
Allowed substitution hints:   𝜑(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜓(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜏(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜎(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑝)   𝐶(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐷(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝑅(𝑝)   𝐺(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝑋(𝑦,𝑖,𝑚,𝑝)   𝜑′(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜑″(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj944
StepHypRef Expression
1 simpl 472 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → (𝑅 FrSe 𝐴𝑋𝐴))
2 bnj944.3 . . . . . . . 8 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
3 bnj667 30076 . . . . . . . 8 ((𝑛𝐷𝑓 Fn 𝑛𝜑𝜓) → (𝑓 Fn 𝑛𝜑𝜓))
42, 3sylbi 206 . . . . . . 7 (𝜒 → (𝑓 Fn 𝑛𝜑𝜓))
5 bnj944.14 . . . . . . 7 (𝜏 ↔ (𝑓 Fn 𝑛𝜑𝜓))
64, 5sylibr 223 . . . . . 6 (𝜒𝜏)
763ad2ant1 1075 . . . . 5 ((𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) → 𝜏)
87adantl 481 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝜏)
92bnj1232 30128 . . . . . . 7 (𝜒𝑛𝐷)
10 vex 3176 . . . . . . . 8 𝑚 ∈ V
1110bnj216 30054 . . . . . . 7 (𝑛 = suc 𝑚𝑚𝑛)
12 id 22 . . . . . . 7 (𝑝 = suc 𝑛𝑝 = suc 𝑛)
139, 11, 123anim123i 1240 . . . . . 6 ((𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) → (𝑛𝐷𝑚𝑛𝑝 = suc 𝑛))
14 bnj944.15 . . . . . . 7 (𝜎 ↔ (𝑛𝐷𝑝 = suc 𝑛𝑚𝑛))
15 3ancomb 1040 . . . . . . 7 ((𝑛𝐷𝑝 = suc 𝑛𝑚𝑛) ↔ (𝑛𝐷𝑚𝑛𝑝 = suc 𝑛))
1614, 15bitri 263 . . . . . 6 (𝜎 ↔ (𝑛𝐷𝑚𝑛𝑝 = suc 𝑛))
1713, 16sylibr 223 . . . . 5 ((𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) → 𝜎)
1817adantl 481 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝜎)
19 bnj253 30023 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴𝜏𝜎) ↔ ((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝜏𝜎))
201, 8, 18, 19syl3anbrc 1239 . . 3 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → (𝑅 FrSe 𝐴𝑋𝐴𝜏𝜎))
21 bnj944.12 . . . 4 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
22 bnj944.10 . . . . 5 𝐷 = (ω ∖ {∅})
23 bnj944.1 . . . . 5 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
24 bnj944.2 . . . . 5 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
2522, 5, 14, 23, 24bnj938 30261 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴𝜏𝜎) → 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅) ∈ V)
2621, 25syl5eqel 2692 . . 3 ((𝑅 FrSe 𝐴𝑋𝐴𝜏𝜎) → 𝐶 ∈ V)
2720, 26syl 17 . 2 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝐶 ∈ V)
28 bnj658 30075 . . . . . 6 ((𝑛𝐷𝑓 Fn 𝑛𝜑𝜓) → (𝑛𝐷𝑓 Fn 𝑛𝜑))
292, 28sylbi 206 . . . . 5 (𝜒 → (𝑛𝐷𝑓 Fn 𝑛𝜑))
30293ad2ant1 1075 . . . 4 ((𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) → (𝑛𝐷𝑓 Fn 𝑛𝜑))
31 simp3 1056 . . . 4 ((𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) → 𝑝 = suc 𝑛)
32 bnj291 30030 . . . 4 ((𝑛𝐷𝑝 = suc 𝑛𝑓 Fn 𝑛𝜑) ↔ ((𝑛𝐷𝑓 Fn 𝑛𝜑) ∧ 𝑝 = suc 𝑛))
3330, 31, 32sylanbrc 695 . . 3 ((𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) → (𝑛𝐷𝑝 = suc 𝑛𝑓 Fn 𝑛𝜑))
3433adantl 481 . 2 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → (𝑛𝐷𝑝 = suc 𝑛𝑓 Fn 𝑛𝜑))
35 bnj944.7 . . . . 5 (𝜑″[𝐺 / 𝑓]𝜑′)
36 bnj944.13 . . . . . . 7 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
37 opeq2 4341 . . . . . . . . 9 (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → ⟨𝑛, 𝐶⟩ = ⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩)
3837sneqd 4137 . . . . . . . 8 (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → {⟨𝑛, 𝐶⟩} = {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩})
3938uneq2d 3729 . . . . . . 7 (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → (𝑓 ∪ {⟨𝑛, 𝐶⟩}) = (𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩}))
4036, 39syl5eq 2656 . . . . . 6 (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → 𝐺 = (𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩}))
4140sbceq1d 3407 . . . . 5 (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → ([𝐺 / 𝑓]𝜑′[(𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩}) / 𝑓]𝜑′))
4235, 41syl5bb 271 . . . 4 (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → (𝜑″[(𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩}) / 𝑓]𝜑′))
4342imbi2d 329 . . 3 (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → (((𝑛𝐷𝑝 = suc 𝑛𝑓 Fn 𝑛𝜑) → 𝜑″) ↔ ((𝑛𝐷𝑝 = suc 𝑛𝑓 Fn 𝑛𝜑) → [(𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩}) / 𝑓]𝜑′)))
44 bnj944.4 . . . 4 (𝜑′[𝑝 / 𝑛]𝜑)
45 biid 250 . . . 4 ([(𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩}) / 𝑓]𝜑′[(𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩}) / 𝑓]𝜑′)
46 eqid 2610 . . . 4 (𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩}) = (𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩})
47 0ex 4718 . . . . 5 ∅ ∈ V
4847elimel 4100 . . . 4 if(𝐶 ∈ V, 𝐶, ∅) ∈ V
4923, 44, 45, 22, 46, 48bnj929 30260 . . 3 ((𝑛𝐷𝑝 = suc 𝑛𝑓 Fn 𝑛𝜑) → [(𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩}) / 𝑓]𝜑′)
5043, 49dedth 4089 . 2 (𝐶 ∈ V → ((𝑛𝐷𝑝 = suc 𝑛𝑓 Fn 𝑛𝜑) → 𝜑″))
5127, 34, 50sylc 63 1 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝜑″)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896  Vcvv 3173  [wsbc 3402   ∖ cdif 3537   ∪ cun 3538  ∅c0 3874  ifcif 4036  {csn 4125  ⟨cop 4131  ∪ ciun 4455  suc csuc 5642   Fn wfn 5799  ‘cfv 5804  ωcom 6957   ∧ w-bnj17 30005   predc-bnj14 30007   FrSe w-bnj15 30011 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847  ax-reg 8380 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-bnj17 30006  df-bnj14 30008  df-bnj13 30010  df-bnj15 30012 This theorem is referenced by:  bnj910  30272
 Copyright terms: Public domain W3C validator