Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj910 Structured version   Unicode version

Theorem bnj910 29767
Description: Technical lemma for bnj69 29827. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj910.1  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
bnj910.2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj910.3  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
bnj910.4  |-  ( ph'  <->  [. p  /  n ]. ph )
bnj910.5  |-  ( ps'  <->  [. p  /  n ]. ps )
bnj910.6  |-  ( ch'  <->  [. p  /  n ]. ch )
bnj910.7  |-  ( ph"  <->  [. G  / 
f ]. ph' )
bnj910.8  |-  ( ps"  <->  [. G  / 
f ]. ps' )
bnj910.9  |-  ( ch"  <->  [. G  / 
f ]. ch' )
bnj910.10  |-  D  =  ( om  \  { (/)
} )
bnj910.11  |-  B  =  { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
bnj910.12  |-  C  = 
U_ y  e.  ( f `  m ) 
pred ( y ,  A ,  R )
bnj910.13  |-  G  =  ( f  u.  { <. n ,  C >. } )
bnj910.14  |-  ( ta  <->  ( f  Fn  n  /\  ph 
/\  ps ) )
bnj910.15  |-  ( si  <->  ( n  e.  D  /\  p  =  suc  n  /\  m  e.  n )
)
Assertion
Ref Expression
bnj910  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  ch" )
Distinct variable groups:    A, f,
i, m, n, y    D, f, i, n    i, G    R, f, i, m, n, y    f, X, i, n    f, p, i, n    ph, i
Allowed substitution hints:    ph( y, f, m, n, p)    ps( y, f, i, m, n, p)    ch( y, f, i, m, n, p)    ta( y, f, i, m, n, p)    si( y, f, i, m, n, p)    A( p)    B( y, f, i, m, n, p)    C( y, f, i, m, n, p)    D( y, m, p)    R( p)    G( y, f, m, n, p)    X( y, m, p)    ph'( y, f, i, m, n, p)    ps'( y, f, i, m, n, p)    ch'( y, f, i, m, n, p)    ph"( y, f, i, m, n, p)   
ps"( y, f, i, m, n, p)    ch"( y, f, i, m, n, p)

Proof of Theorem bnj910
StepHypRef Expression
1 bnj910.3 . . . 4  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
2 bnj910.10 . . . 4  |-  D  =  ( om  \  { (/)
} )
31, 2bnj970 29766 . . 3  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  p  e.  D )
4 bnj910.1 . . . . 5  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
5 bnj910.2 . . . . 5  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
6 bnj910.12 . . . . 5  |-  C  = 
U_ y  e.  ( f `  m ) 
pred ( y ,  A ,  R )
7 bnj910.14 . . . . 5  |-  ( ta  <->  ( f  Fn  n  /\  ph 
/\  ps ) )
8 bnj910.15 . . . . 5  |-  ( si  <->  ( n  e.  D  /\  p  =  suc  n  /\  m  e.  n )
)
94, 5, 1, 2, 6, 7, 8bnj969 29765 . . . 4  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  C  e.  _V )
10 simpr3 1013 . . . 4  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  p  =  suc  n )
111bnj1235 29624 . . . . . 6  |-  ( ch 
->  f  Fn  n
)
12113ad2ant1 1026 . . . . 5  |-  ( ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  -> 
f  Fn  n )
1312adantl 467 . . . 4  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  -> 
f  Fn  n )
14 bnj910.13 . . . . . 6  |-  G  =  ( f  u.  { <. n ,  C >. } )
1514bnj941 29592 . . . . 5  |-  ( C  e.  _V  ->  (
( p  =  suc  n  /\  f  Fn  n
)  ->  G  Fn  p ) )
16153impib 1203 . . . 4  |-  ( ( C  e.  _V  /\  p  =  suc  n  /\  f  Fn  n )  ->  G  Fn  p )
179, 10, 13, 16syl3anc 1264 . . 3  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  G  Fn  p )
18 bnj910.4 . . . 4  |-  ( ph'  <->  [. p  /  n ]. ph )
19 bnj910.7 . . . 4  |-  ( ph"  <->  [. G  / 
f ]. ph' )
204, 5, 1, 18, 19, 2, 6, 14, 7, 8bnj944 29757 . . 3  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  ph" )
21 bnj910.5 . . . 4  |-  ( ps'  <->  [. p  /  n ]. ps )
22 bnj910.8 . . . 4  |-  ( ps"  <->  [. G  / 
f ]. ps' )
235, 1, 2, 6, 14, 9bnj967 29764 . . . 4  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
) )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) )
241, 2, 6, 14, 9, 17bnj966 29763 . . . 4  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  n  =  suc  i ) )  -> 
( G `  suc  i )  =  U_ y  e.  ( G `  i )  pred (
y ,  A ,  R ) )
255, 1, 21, 22, 6, 14, 23, 24bnj964 29762 . . 3  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  ps" )
263, 17, 20, 25bnj951 29595 . 2  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  -> 
( p  e.  D  /\  G  Fn  p  /\  ph"  /\  ps" ) )
27 bnj910.6 . . . 4  |-  ( ch'  <->  [. p  /  n ]. ch )
28 vex 3083 . . . 4  |-  p  e. 
_V
291, 18, 21, 27, 28bnj919 29586 . . 3  |-  ( ch'  <->  (
p  e.  D  /\  f  Fn  p  /\  ph' 
/\  ps' ) )
30 bnj910.9 . . 3  |-  ( ch"  <->  [. G  / 
f ]. ch' )
3114bnj918 29585 . . 3  |-  G  e. 
_V
3229, 19, 22, 30, 31bnj976 29597 . 2  |-  ( ch"  <->  ( p  e.  D  /\  G  Fn  p  /\  ph"  /\  ps" ) )
3326, 32sylibr 215 1  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  ch" )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872   {cab 2407   A.wral 2771   E.wrex 2772   _Vcvv 3080   [.wsbc 3299    \ cdif 3433    u. cun 3434   (/)c0 3761   {csn 3998   <.cop 4004   U_ciun 4299   suc csuc 5444    Fn wfn 5596   ` cfv 5601   omcom 6706    /\ w-bnj17 29499    predc-bnj14 29501    FrSe w-bnj15 29505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pr 4660  ax-un 6597  ax-reg 8116
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rex 2777  df-reu 2778  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-iun 4301  df-br 4424  df-opab 4483  df-mpt 4484  df-tr 4519  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-om 6707  df-bnj17 29500  df-bnj14 29502  df-bnj13 29504  df-bnj15 29506
This theorem is referenced by:  bnj998  29775
  Copyright terms: Public domain W3C validator