MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2pthfrgrarn2 Structured version   Visualization version   GIF version

Theorem 2pthfrgrarn2 26537
Description: Between any two (different) vertices in a friendship graph is a 2-path (path of length 2), see Proposition 1(b) of [MertziosUnger] p. 153 : "A friendship graph G ..., as well as the distance between any two nodes in G is at most two". (Contributed by Alexander van der Vekens, 16-Nov-2017.)
Assertion
Ref Expression
2pthfrgrarn2 (𝑉 FriendGrph 𝐸 → ∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏𝑉 (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ (𝑎𝑏𝑏𝑐)))
Distinct variable groups:   𝐸,𝑎,𝑏,𝑐   𝑉,𝑎,𝑏,𝑐

Proof of Theorem 2pthfrgrarn2
StepHypRef Expression
1 2pthfrgrarn 26536 . 2 (𝑉 FriendGrph 𝐸 → ∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸))
2 frisusgra 26519 . . . . . . . 8 (𝑉 FriendGrph 𝐸𝑉 USGrph 𝐸)
3 usgraedgrn 25910 . . . . . . . . . 10 ((𝑉 USGrph 𝐸 ∧ {𝑎, 𝑏} ∈ ran 𝐸) → 𝑎𝑏)
43ex 449 . . . . . . . . 9 (𝑉 USGrph 𝐸 → ({𝑎, 𝑏} ∈ ran 𝐸𝑎𝑏))
5 usgraedgrn 25910 . . . . . . . . . 10 ((𝑉 USGrph 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) → 𝑏𝑐)
65ex 449 . . . . . . . . 9 (𝑉 USGrph 𝐸 → ({𝑏, 𝑐} ∈ ran 𝐸𝑏𝑐))
74, 6anim12d 584 . . . . . . . 8 (𝑉 USGrph 𝐸 → (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) → (𝑎𝑏𝑏𝑐)))
82, 7syl 17 . . . . . . 7 (𝑉 FriendGrph 𝐸 → (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) → (𝑎𝑏𝑏𝑐)))
98ad3antrrr 762 . . . . . 6 ((((𝑉 FriendGrph 𝐸𝑎𝑉) ∧ 𝑐 ∈ (𝑉 ∖ {𝑎})) ∧ 𝑏𝑉) → (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) → (𝑎𝑏𝑏𝑐)))
109ancld 574 . . . . 5 ((((𝑉 FriendGrph 𝐸𝑎𝑉) ∧ 𝑐 ∈ (𝑉 ∖ {𝑎})) ∧ 𝑏𝑉) → (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) → (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ (𝑎𝑏𝑏𝑐))))
1110reximdva 3000 . . . 4 (((𝑉 FriendGrph 𝐸𝑎𝑉) ∧ 𝑐 ∈ (𝑉 ∖ {𝑎})) → (∃𝑏𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) → ∃𝑏𝑉 (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ (𝑎𝑏𝑏𝑐))))
1211ralimdva 2945 . . 3 ((𝑉 FriendGrph 𝐸𝑎𝑉) → (∀𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) → ∀𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏𝑉 (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ (𝑎𝑏𝑏𝑐))))
1312ralimdva 2945 . 2 (𝑉 FriendGrph 𝐸 → (∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) → ∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏𝑉 (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ (𝑎𝑏𝑏𝑐))))
141, 13mpd 15 1 (𝑉 FriendGrph 𝐸 → ∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏𝑉 (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ (𝑎𝑏𝑏𝑐)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wcel 1977  wne 2780  wral 2896  wrex 2897  cdif 3537  {csn 4125  {cpr 4127   class class class wbr 4583  ran crn 5039   USGrph cusg 25859   FriendGrph cfrgra 26515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980  df-usgra 25862  df-frgra 26516
This theorem is referenced by:  2pthfrgra  26538  3cyclfrgrarn1  26539
  Copyright terms: Public domain W3C validator