MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2pthfrgrarn Structured version   Visualization version   GIF version

Theorem 2pthfrgrarn 26536
Description: Between any two (different) vertices in a friendship graph is a 2-path (path of length 2), see Proposition 1(b) of [MertziosUnger] p. 153 : "A friendship graph G ..., as well as the distance between any two nodes in G is at most two". (Contributed by Alexander van der Vekens, 15-Nov-2017.)
Assertion
Ref Expression
2pthfrgrarn (𝑉 FriendGrph 𝐸 → ∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸))
Distinct variable groups:   𝐸,𝑎,𝑏,𝑐   𝑉,𝑎,𝑏,𝑐

Proof of Theorem 2pthfrgrarn
StepHypRef Expression
1 frisusgrapr 26518 . 2 (𝑉 FriendGrph 𝐸 → (𝑉 USGrph 𝐸 ∧ ∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃!𝑏𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ ran 𝐸))
2 reurex 3137 . . . . . . 7 (∃!𝑏𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ ran 𝐸 → ∃𝑏𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ ran 𝐸)
3 prcom 4211 . . . . . . . . . . . 12 {𝑎, 𝑏} = {𝑏, 𝑎}
43eleq1i 2679 . . . . . . . . . . 11 ({𝑎, 𝑏} ∈ ran 𝐸 ↔ {𝑏, 𝑎} ∈ ran 𝐸)
54anbi1i 727 . . . . . . . . . 10 (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ↔ ({𝑏, 𝑎} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸))
6 zfpair2 4834 . . . . . . . . . . 11 {𝑏, 𝑎} ∈ V
7 zfpair2 4834 . . . . . . . . . . 11 {𝑏, 𝑐} ∈ V
86, 7prss 4291 . . . . . . . . . 10 (({𝑏, 𝑎} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ↔ {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ ran 𝐸)
95, 8bitri 263 . . . . . . . . 9 (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ↔ {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ ran 𝐸)
109biimpri 217 . . . . . . . 8 ({{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ ran 𝐸 → ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸))
1110reximi 2994 . . . . . . 7 (∃𝑏𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ ran 𝐸 → ∃𝑏𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸))
122, 11syl 17 . . . . . 6 (∃!𝑏𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ ran 𝐸 → ∃𝑏𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸))
1312a1i 11 . . . . 5 (((𝑉 USGrph 𝐸𝑎𝑉) ∧ 𝑐 ∈ (𝑉 ∖ {𝑎})) → (∃!𝑏𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ ran 𝐸 → ∃𝑏𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸)))
1413ralimdva 2945 . . . 4 ((𝑉 USGrph 𝐸𝑎𝑉) → (∀𝑐 ∈ (𝑉 ∖ {𝑎})∃!𝑏𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ ran 𝐸 → ∀𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸)))
1514ralimdva 2945 . . 3 (𝑉 USGrph 𝐸 → (∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃!𝑏𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ ran 𝐸 → ∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸)))
1615imp 444 . 2 ((𝑉 USGrph 𝐸 ∧ ∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃!𝑏𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ ran 𝐸) → ∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸))
171, 16syl 17 1 (𝑉 FriendGrph 𝐸 → ∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wcel 1977  wral 2896  wrex 2897  ∃!wreu 2898  cdif 3537  wss 3540  {csn 4125  {cpr 4127   class class class wbr 4583  ran crn 5039   USGrph cusg 25859   FriendGrph cfrgra 26515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-xp 5044  df-rel 5045  df-cnv 5046  df-dm 5048  df-rn 5049  df-frgra 26516
This theorem is referenced by:  2pthfrgrarn2  26537  3cyclfrgrarn1  26539
  Copyright terms: Public domain W3C validator