Proof of Theorem 21wlkdlem10
Step | Hyp | Ref
| Expression |
1 | | 21wlkd.p |
. . . 4
⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 |
2 | | 21wlkd.f |
. . . 4
⊢ 𝐹 = 〈“𝐽𝐾”〉 |
3 | | 21wlkd.s |
. . . 4
⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
4 | | 21wlkd.n |
. . . 4
⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) |
5 | | 21wlkd.e |
. . . 4
⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) |
6 | 1, 2, 3, 4, 5 | 21wlkdlem9 41141 |
. . 3
⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘(𝐹‘0)) ∧ {𝐵, 𝐶} ⊆ (𝐼‘(𝐹‘1)))) |
7 | 1, 2, 3 | 21wlkdlem3 41134 |
. . . 4
⊢ (𝜑 → ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) |
8 | | preq12 4214 |
. . . . . . 7
⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → {(𝑃‘0), (𝑃‘1)} = {𝐴, 𝐵}) |
9 | 8 | 3adant3 1074 |
. . . . . 6
⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → {(𝑃‘0), (𝑃‘1)} = {𝐴, 𝐵}) |
10 | 9 | sseq1d 3595 |
. . . . 5
⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)) ↔ {𝐴, 𝐵} ⊆ (𝐼‘(𝐹‘0)))) |
11 | | preq12 4214 |
. . . . . . 7
⊢ (((𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → {(𝑃‘1), (𝑃‘2)} = {𝐵, 𝐶}) |
12 | 11 | 3adant1 1072 |
. . . . . 6
⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → {(𝑃‘1), (𝑃‘2)} = {𝐵, 𝐶}) |
13 | 12 | sseq1d 3595 |
. . . . 5
⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → ({(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘(𝐹‘1)) ↔ {𝐵, 𝐶} ⊆ (𝐼‘(𝐹‘1)))) |
14 | 10, 13 | anbi12d 743 |
. . . 4
⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘(𝐹‘1))) ↔ ({𝐴, 𝐵} ⊆ (𝐼‘(𝐹‘0)) ∧ {𝐵, 𝐶} ⊆ (𝐼‘(𝐹‘1))))) |
15 | 7, 14 | syl 17 |
. . 3
⊢ (𝜑 → (({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘(𝐹‘1))) ↔ ({𝐴, 𝐵} ⊆ (𝐼‘(𝐹‘0)) ∧ {𝐵, 𝐶} ⊆ (𝐼‘(𝐹‘1))))) |
16 | 6, 15 | mpbird 246 |
. 2
⊢ (𝜑 → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘(𝐹‘1)))) |
17 | 1, 2 | 21wlkdlem2 41133 |
. . . 4
⊢
(0..^(#‘𝐹)) =
{0, 1} |
18 | 17 | raleqi 3119 |
. . 3
⊢
(∀𝑘 ∈
(0..^(#‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)) ↔ ∀𝑘 ∈ {0, 1} {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) |
19 | | c0ex 9913 |
. . . 4
⊢ 0 ∈
V |
20 | | 1ex 9914 |
. . . 4
⊢ 1 ∈
V |
21 | | fveq2 6103 |
. . . . . 6
⊢ (𝑘 = 0 → (𝑃‘𝑘) = (𝑃‘0)) |
22 | | oveq1 6556 |
. . . . . . . 8
⊢ (𝑘 = 0 → (𝑘 + 1) = (0 + 1)) |
23 | | 0p1e1 11009 |
. . . . . . . 8
⊢ (0 + 1) =
1 |
24 | 22, 23 | syl6eq 2660 |
. . . . . . 7
⊢ (𝑘 = 0 → (𝑘 + 1) = 1) |
25 | 24 | fveq2d 6107 |
. . . . . 6
⊢ (𝑘 = 0 → (𝑃‘(𝑘 + 1)) = (𝑃‘1)) |
26 | 21, 25 | preq12d 4220 |
. . . . 5
⊢ (𝑘 = 0 → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘0), (𝑃‘1)}) |
27 | | fveq2 6103 |
. . . . . 6
⊢ (𝑘 = 0 → (𝐹‘𝑘) = (𝐹‘0)) |
28 | 27 | fveq2d 6107 |
. . . . 5
⊢ (𝑘 = 0 → (𝐼‘(𝐹‘𝑘)) = (𝐼‘(𝐹‘0))) |
29 | 26, 28 | sseq12d 3597 |
. . . 4
⊢ (𝑘 = 0 → ({(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)) ↔ {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)))) |
30 | | fveq2 6103 |
. . . . . 6
⊢ (𝑘 = 1 → (𝑃‘𝑘) = (𝑃‘1)) |
31 | | oveq1 6556 |
. . . . . . . 8
⊢ (𝑘 = 1 → (𝑘 + 1) = (1 + 1)) |
32 | | 1p1e2 11011 |
. . . . . . . 8
⊢ (1 + 1) =
2 |
33 | 31, 32 | syl6eq 2660 |
. . . . . . 7
⊢ (𝑘 = 1 → (𝑘 + 1) = 2) |
34 | 33 | fveq2d 6107 |
. . . . . 6
⊢ (𝑘 = 1 → (𝑃‘(𝑘 + 1)) = (𝑃‘2)) |
35 | 30, 34 | preq12d 4220 |
. . . . 5
⊢ (𝑘 = 1 → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘1), (𝑃‘2)}) |
36 | | fveq2 6103 |
. . . . . 6
⊢ (𝑘 = 1 → (𝐹‘𝑘) = (𝐹‘1)) |
37 | 36 | fveq2d 6107 |
. . . . 5
⊢ (𝑘 = 1 → (𝐼‘(𝐹‘𝑘)) = (𝐼‘(𝐹‘1))) |
38 | 35, 37 | sseq12d 3597 |
. . . 4
⊢ (𝑘 = 1 → ({(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)) ↔ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘(𝐹‘1)))) |
39 | 19, 20, 29, 38 | ralpr 4185 |
. . 3
⊢
(∀𝑘 ∈
{0, 1} {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)) ↔ ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘(𝐹‘1)))) |
40 | 18, 39 | bitri 263 |
. 2
⊢
(∀𝑘 ∈
(0..^(#‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)) ↔ ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘(𝐹‘1)))) |
41 | 16, 40 | sylibr 223 |
1
⊢ (𝜑 → ∀𝑘 ∈ (0..^(#‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) |