Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xreceu Structured version   Visualization version   GIF version

Theorem xreceu 28961
Description: Existential uniqueness of reciprocals. Theorem I.8 of [Apostol] p. 18. (Contributed by Thierry Arnoux, 17-Dec-2016.)
Assertion
Ref Expression
xreceu ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem xreceu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ressxr 9962 . . . 4 ℝ ⊆ ℝ*
2 xrecex 28959 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃𝑦 ∈ ℝ (𝐵 ·e 𝑦) = 1)
323adant1 1072 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃𝑦 ∈ ℝ (𝐵 ·e 𝑦) = 1)
4 ssrexv 3630 . . . 4 (ℝ ⊆ ℝ* → (∃𝑦 ∈ ℝ (𝐵 ·e 𝑦) = 1 → ∃𝑦 ∈ ℝ* (𝐵 ·e 𝑦) = 1))
51, 3, 4mpsyl 66 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃𝑦 ∈ ℝ* (𝐵 ·e 𝑦) = 1)
6 simprl 790 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → 𝑦 ∈ ℝ*)
7 simpll 786 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → 𝐴 ∈ ℝ*)
86, 7xmulcld 12004 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → (𝑦 ·e 𝐴) ∈ ℝ*)
9 oveq1 6556 . . . . . . . 8 ((𝐵 ·e 𝑦) = 1 → ((𝐵 ·e 𝑦) ·e 𝐴) = (1 ·e 𝐴))
109ad2antll 761 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → ((𝐵 ·e 𝑦) ·e 𝐴) = (1 ·e 𝐴))
11 simplr 788 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → 𝐵 ∈ ℝ)
1211rexrd 9968 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → 𝐵 ∈ ℝ*)
13 xmulass 11989 . . . . . . . 8 ((𝐵 ∈ ℝ*𝑦 ∈ ℝ*𝐴 ∈ ℝ*) → ((𝐵 ·e 𝑦) ·e 𝐴) = (𝐵 ·e (𝑦 ·e 𝐴)))
1412, 6, 7, 13syl3anc 1318 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → ((𝐵 ·e 𝑦) ·e 𝐴) = (𝐵 ·e (𝑦 ·e 𝐴)))
15 xmulid2 11982 . . . . . . . 8 (𝐴 ∈ ℝ* → (1 ·e 𝐴) = 𝐴)
167, 15syl 17 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → (1 ·e 𝐴) = 𝐴)
1710, 14, 163eqtr3d 2652 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → (𝐵 ·e (𝑦 ·e 𝐴)) = 𝐴)
18 oveq2 6557 . . . . . . . 8 (𝑥 = (𝑦 ·e 𝐴) → (𝐵 ·e 𝑥) = (𝐵 ·e (𝑦 ·e 𝐴)))
1918eqeq1d 2612 . . . . . . 7 (𝑥 = (𝑦 ·e 𝐴) → ((𝐵 ·e 𝑥) = 𝐴 ↔ (𝐵 ·e (𝑦 ·e 𝐴)) = 𝐴))
2019rspcev 3282 . . . . . 6 (((𝑦 ·e 𝐴) ∈ ℝ* ∧ (𝐵 ·e (𝑦 ·e 𝐴)) = 𝐴) → ∃𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)
218, 17, 20syl2anc 691 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → ∃𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)
2221rexlimdvaa 3014 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (∃𝑦 ∈ ℝ* (𝐵 ·e 𝑦) = 1 → ∃𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
23223adant3 1074 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (∃𝑦 ∈ ℝ* (𝐵 ·e 𝑦) = 1 → ∃𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
245, 23mpd 15 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)
25 eqtr3 2631 . . . . . . 7 (((𝐵 ·e 𝑥) = 𝐴 ∧ (𝐵 ·e 𝑦) = 𝐴) → (𝐵 ·e 𝑥) = (𝐵 ·e 𝑦))
26 simp1 1054 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → 𝑥 ∈ ℝ*)
27 simp2 1055 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → 𝑦 ∈ ℝ*)
28 simp3l 1082 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℝ)
29 simp3r 1083 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → 𝐵 ≠ 0)
3026, 27, 28, 29xmulcand 28960 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → ((𝐵 ·e 𝑥) = (𝐵 ·e 𝑦) ↔ 𝑥 = 𝑦))
3125, 30syl5ib 233 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (((𝐵 ·e 𝑥) = 𝐴 ∧ (𝐵 ·e 𝑦) = 𝐴) → 𝑥 = 𝑦))
32313expa 1257 . . . . 5 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (((𝐵 ·e 𝑥) = 𝐴 ∧ (𝐵 ·e 𝑦) = 𝐴) → 𝑥 = 𝑦))
3332expcom 450 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (((𝐵 ·e 𝑥) = 𝐴 ∧ (𝐵 ·e 𝑦) = 𝐴) → 𝑥 = 𝑦)))
34333adant1 1072 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (((𝐵 ·e 𝑥) = 𝐴 ∧ (𝐵 ·e 𝑦) = 𝐴) → 𝑥 = 𝑦)))
3534ralrimivv 2953 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* (((𝐵 ·e 𝑥) = 𝐴 ∧ (𝐵 ·e 𝑦) = 𝐴) → 𝑥 = 𝑦))
36 oveq2 6557 . . . 4 (𝑥 = 𝑦 → (𝐵 ·e 𝑥) = (𝐵 ·e 𝑦))
3736eqeq1d 2612 . . 3 (𝑥 = 𝑦 → ((𝐵 ·e 𝑥) = 𝐴 ↔ (𝐵 ·e 𝑦) = 𝐴))
3837reu4 3367 . 2 (∃!𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴 ↔ (∃𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴 ∧ ∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* (((𝐵 ·e 𝑥) = 𝐴 ∧ (𝐵 ·e 𝑦) = 𝐴) → 𝑥 = 𝑦)))
3924, 35, 38sylanbrc 695 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  ∃!wreu 2898  wss 3540  (class class class)co 6549  cr 9814  0cc0 9815  1c1 9816  *cxr 9952   ·e cxmu 11821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-xneg 11822  df-xmul 11824
This theorem is referenced by:  xdivcld  28962  xdivmul  28964  rexdiv  28965  xrmulc1cn  29304
  Copyright terms: Public domain W3C validator