MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmulass Structured version   Visualization version   GIF version

Theorem xmulass 11989
Description: Associativity of the extended real multiplication operation. Surprisingly, there are no restrictions on the values, unlike xaddass 11951 which has to avoid the "undefined" combinations +∞ +𝑒 -∞ and -∞ +𝑒 +∞. The equivalent "undefined" expression here would be 0 ·e +∞, but since this is defined to equal 0 any zeroes in the expression make the whole thing evaluate to zero (on both sides), thus establishing the identity in this case. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmulass ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶)))

Proof of Theorem xmulass
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6556 . . . 4 (𝑥 = 𝐴 → (𝑥 ·e 𝐵) = (𝐴 ·e 𝐵))
21oveq1d 6564 . . 3 (𝑥 = 𝐴 → ((𝑥 ·e 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐵) ·e 𝐶))
3 oveq1 6556 . . 3 (𝑥 = 𝐴 → (𝑥 ·e (𝐵 ·e 𝐶)) = (𝐴 ·e (𝐵 ·e 𝐶)))
42, 3eqeq12d 2625 . 2 (𝑥 = 𝐴 → (((𝑥 ·e 𝐵) ·e 𝐶) = (𝑥 ·e (𝐵 ·e 𝐶)) ↔ ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶))))
5 oveq1 6556 . . . 4 (𝑥 = -𝑒𝐴 → (𝑥 ·e 𝐵) = (-𝑒𝐴 ·e 𝐵))
65oveq1d 6564 . . 3 (𝑥 = -𝑒𝐴 → ((𝑥 ·e 𝐵) ·e 𝐶) = ((-𝑒𝐴 ·e 𝐵) ·e 𝐶))
7 oveq1 6556 . . 3 (𝑥 = -𝑒𝐴 → (𝑥 ·e (𝐵 ·e 𝐶)) = (-𝑒𝐴 ·e (𝐵 ·e 𝐶)))
86, 7eqeq12d 2625 . 2 (𝑥 = -𝑒𝐴 → (((𝑥 ·e 𝐵) ·e 𝐶) = (𝑥 ·e (𝐵 ·e 𝐶)) ↔ ((-𝑒𝐴 ·e 𝐵) ·e 𝐶) = (-𝑒𝐴 ·e (𝐵 ·e 𝐶))))
9 xmulcl 11975 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 ·e 𝐵) ∈ ℝ*)
10 xmulcl 11975 . . 3 (((𝐴 ·e 𝐵) ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 ·e 𝐵) ·e 𝐶) ∈ ℝ*)
119, 10stoic3 1692 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 ·e 𝐵) ·e 𝐶) ∈ ℝ*)
12 simp1 1054 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ∈ ℝ*)
13 xmulcl 11975 . . . 4 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 ·e 𝐶) ∈ ℝ*)
14133adant1 1072 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 ·e 𝐶) ∈ ℝ*)
15 xmulcl 11975 . . 3 ((𝐴 ∈ ℝ* ∧ (𝐵 ·e 𝐶) ∈ ℝ*) → (𝐴 ·e (𝐵 ·e 𝐶)) ∈ ℝ*)
1612, 14, 15syl2anc 691 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ·e (𝐵 ·e 𝐶)) ∈ ℝ*)
17 oveq2 6557 . . . . 5 (𝑦 = 𝐵 → (𝑥 ·e 𝑦) = (𝑥 ·e 𝐵))
1817oveq1d 6564 . . . 4 (𝑦 = 𝐵 → ((𝑥 ·e 𝑦) ·e 𝐶) = ((𝑥 ·e 𝐵) ·e 𝐶))
19 oveq1 6556 . . . . 5 (𝑦 = 𝐵 → (𝑦 ·e 𝐶) = (𝐵 ·e 𝐶))
2019oveq2d 6565 . . . 4 (𝑦 = 𝐵 → (𝑥 ·e (𝑦 ·e 𝐶)) = (𝑥 ·e (𝐵 ·e 𝐶)))
2118, 20eqeq12d 2625 . . 3 (𝑦 = 𝐵 → (((𝑥 ·e 𝑦) ·e 𝐶) = (𝑥 ·e (𝑦 ·e 𝐶)) ↔ ((𝑥 ·e 𝐵) ·e 𝐶) = (𝑥 ·e (𝐵 ·e 𝐶))))
22 oveq2 6557 . . . . 5 (𝑦 = -𝑒𝐵 → (𝑥 ·e 𝑦) = (𝑥 ·e -𝑒𝐵))
2322oveq1d 6564 . . . 4 (𝑦 = -𝑒𝐵 → ((𝑥 ·e 𝑦) ·e 𝐶) = ((𝑥 ·e -𝑒𝐵) ·e 𝐶))
24 oveq1 6556 . . . . 5 (𝑦 = -𝑒𝐵 → (𝑦 ·e 𝐶) = (-𝑒𝐵 ·e 𝐶))
2524oveq2d 6565 . . . 4 (𝑦 = -𝑒𝐵 → (𝑥 ·e (𝑦 ·e 𝐶)) = (𝑥 ·e (-𝑒𝐵 ·e 𝐶)))
2623, 25eqeq12d 2625 . . 3 (𝑦 = -𝑒𝐵 → (((𝑥 ·e 𝑦) ·e 𝐶) = (𝑥 ·e (𝑦 ·e 𝐶)) ↔ ((𝑥 ·e -𝑒𝐵) ·e 𝐶) = (𝑥 ·e (-𝑒𝐵 ·e 𝐶))))
27 simprl 790 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) → 𝑥 ∈ ℝ*)
28 simpl2 1058 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) → 𝐵 ∈ ℝ*)
29 xmulcl 11975 . . . . 5 ((𝑥 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ·e 𝐵) ∈ ℝ*)
3027, 28, 29syl2anc 691 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) → (𝑥 ·e 𝐵) ∈ ℝ*)
31 simpl3 1059 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) → 𝐶 ∈ ℝ*)
32 xmulcl 11975 . . . 4 (((𝑥 ·e 𝐵) ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑥 ·e 𝐵) ·e 𝐶) ∈ ℝ*)
3330, 31, 32syl2anc 691 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) → ((𝑥 ·e 𝐵) ·e 𝐶) ∈ ℝ*)
3414adantr 480 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) → (𝐵 ·e 𝐶) ∈ ℝ*)
35 xmulcl 11975 . . . 4 ((𝑥 ∈ ℝ* ∧ (𝐵 ·e 𝐶) ∈ ℝ*) → (𝑥 ·e (𝐵 ·e 𝐶)) ∈ ℝ*)
3627, 34, 35syl2anc 691 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) → (𝑥 ·e (𝐵 ·e 𝐶)) ∈ ℝ*)
37 oveq2 6557 . . . . 5 (𝑧 = 𝐶 → ((𝑥 ·e 𝑦) ·e 𝑧) = ((𝑥 ·e 𝑦) ·e 𝐶))
38 oveq2 6557 . . . . . 6 (𝑧 = 𝐶 → (𝑦 ·e 𝑧) = (𝑦 ·e 𝐶))
3938oveq2d 6565 . . . . 5 (𝑧 = 𝐶 → (𝑥 ·e (𝑦 ·e 𝑧)) = (𝑥 ·e (𝑦 ·e 𝐶)))
4037, 39eqeq12d 2625 . . . 4 (𝑧 = 𝐶 → (((𝑥 ·e 𝑦) ·e 𝑧) = (𝑥 ·e (𝑦 ·e 𝑧)) ↔ ((𝑥 ·e 𝑦) ·e 𝐶) = (𝑥 ·e (𝑦 ·e 𝐶))))
41 oveq2 6557 . . . . 5 (𝑧 = -𝑒𝐶 → ((𝑥 ·e 𝑦) ·e 𝑧) = ((𝑥 ·e 𝑦) ·e -𝑒𝐶))
42 oveq2 6557 . . . . . 6 (𝑧 = -𝑒𝐶 → (𝑦 ·e 𝑧) = (𝑦 ·e -𝑒𝐶))
4342oveq2d 6565 . . . . 5 (𝑧 = -𝑒𝐶 → (𝑥 ·e (𝑦 ·e 𝑧)) = (𝑥 ·e (𝑦 ·e -𝑒𝐶)))
4441, 43eqeq12d 2625 . . . 4 (𝑧 = -𝑒𝐶 → (((𝑥 ·e 𝑦) ·e 𝑧) = (𝑥 ·e (𝑦 ·e 𝑧)) ↔ ((𝑥 ·e 𝑦) ·e -𝑒𝐶) = (𝑥 ·e (𝑦 ·e -𝑒𝐶))))
4527adantr 480 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) ∧ (𝑦 ∈ ℝ* ∧ 0 < 𝑦)) → 𝑥 ∈ ℝ*)
46 simprl 790 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) ∧ (𝑦 ∈ ℝ* ∧ 0 < 𝑦)) → 𝑦 ∈ ℝ*)
47 xmulcl 11975 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 ·e 𝑦) ∈ ℝ*)
4845, 46, 47syl2anc 691 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) ∧ (𝑦 ∈ ℝ* ∧ 0 < 𝑦)) → (𝑥 ·e 𝑦) ∈ ℝ*)
4931adantr 480 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) ∧ (𝑦 ∈ ℝ* ∧ 0 < 𝑦)) → 𝐶 ∈ ℝ*)
50 xmulcl 11975 . . . . 5 (((𝑥 ·e 𝑦) ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑥 ·e 𝑦) ·e 𝐶) ∈ ℝ*)
5148, 49, 50syl2anc 691 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) ∧ (𝑦 ∈ ℝ* ∧ 0 < 𝑦)) → ((𝑥 ·e 𝑦) ·e 𝐶) ∈ ℝ*)
52 xmulcl 11975 . . . . . 6 ((𝑦 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑦 ·e 𝐶) ∈ ℝ*)
5346, 49, 52syl2anc 691 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) ∧ (𝑦 ∈ ℝ* ∧ 0 < 𝑦)) → (𝑦 ·e 𝐶) ∈ ℝ*)
54 xmulcl 11975 . . . . 5 ((𝑥 ∈ ℝ* ∧ (𝑦 ·e 𝐶) ∈ ℝ*) → (𝑥 ·e (𝑦 ·e 𝐶)) ∈ ℝ*)
5545, 53, 54syl2anc 691 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) ∧ (𝑦 ∈ ℝ* ∧ 0 < 𝑦)) → (𝑥 ·e (𝑦 ·e 𝐶)) ∈ ℝ*)
56 xmulasslem3 11988 . . . . . 6 (((𝑥 ∈ ℝ* ∧ 0 < 𝑥) ∧ (𝑦 ∈ ℝ* ∧ 0 < 𝑦) ∧ (𝑧 ∈ ℝ* ∧ 0 < 𝑧)) → ((𝑥 ·e 𝑦) ·e 𝑧) = (𝑥 ·e (𝑦 ·e 𝑧)))
57563expa 1257 . . . . 5 ((((𝑥 ∈ ℝ* ∧ 0 < 𝑥) ∧ (𝑦 ∈ ℝ* ∧ 0 < 𝑦)) ∧ (𝑧 ∈ ℝ* ∧ 0 < 𝑧)) → ((𝑥 ·e 𝑦) ·e 𝑧) = (𝑥 ·e (𝑦 ·e 𝑧)))
5857adantlll 750 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) ∧ (𝑦 ∈ ℝ* ∧ 0 < 𝑦)) ∧ (𝑧 ∈ ℝ* ∧ 0 < 𝑧)) → ((𝑥 ·e 𝑦) ·e 𝑧) = (𝑥 ·e (𝑦 ·e 𝑧)))
59 xmul01 11969 . . . . . . . 8 ((𝑥 ·e 𝑦) ∈ ℝ* → ((𝑥 ·e 𝑦) ·e 0) = 0)
6048, 59syl 17 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) ∧ (𝑦 ∈ ℝ* ∧ 0 < 𝑦)) → ((𝑥 ·e 𝑦) ·e 0) = 0)
61 xmul01 11969 . . . . . . . 8 (𝑥 ∈ ℝ* → (𝑥 ·e 0) = 0)
6245, 61syl 17 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) ∧ (𝑦 ∈ ℝ* ∧ 0 < 𝑦)) → (𝑥 ·e 0) = 0)
6360, 62eqtr4d 2647 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) ∧ (𝑦 ∈ ℝ* ∧ 0 < 𝑦)) → ((𝑥 ·e 𝑦) ·e 0) = (𝑥 ·e 0))
64 xmul01 11969 . . . . . . . 8 (𝑦 ∈ ℝ* → (𝑦 ·e 0) = 0)
6564ad2antrl 760 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) ∧ (𝑦 ∈ ℝ* ∧ 0 < 𝑦)) → (𝑦 ·e 0) = 0)
6665oveq2d 6565 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) ∧ (𝑦 ∈ ℝ* ∧ 0 < 𝑦)) → (𝑥 ·e (𝑦 ·e 0)) = (𝑥 ·e 0))
6763, 66eqtr4d 2647 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) ∧ (𝑦 ∈ ℝ* ∧ 0 < 𝑦)) → ((𝑥 ·e 𝑦) ·e 0) = (𝑥 ·e (𝑦 ·e 0)))
68 oveq2 6557 . . . . . 6 (𝑧 = 0 → ((𝑥 ·e 𝑦) ·e 𝑧) = ((𝑥 ·e 𝑦) ·e 0))
69 oveq2 6557 . . . . . . 7 (𝑧 = 0 → (𝑦 ·e 𝑧) = (𝑦 ·e 0))
7069oveq2d 6565 . . . . . 6 (𝑧 = 0 → (𝑥 ·e (𝑦 ·e 𝑧)) = (𝑥 ·e (𝑦 ·e 0)))
7168, 70eqeq12d 2625 . . . . 5 (𝑧 = 0 → (((𝑥 ·e 𝑦) ·e 𝑧) = (𝑥 ·e (𝑦 ·e 𝑧)) ↔ ((𝑥 ·e 𝑦) ·e 0) = (𝑥 ·e (𝑦 ·e 0))))
7267, 71syl5ibrcom 236 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) ∧ (𝑦 ∈ ℝ* ∧ 0 < 𝑦)) → (𝑧 = 0 → ((𝑥 ·e 𝑦) ·e 𝑧) = (𝑥 ·e (𝑦 ·e 𝑧))))
73 xmulneg2 11972 . . . . 5 (((𝑥 ·e 𝑦) ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑥 ·e 𝑦) ·e -𝑒𝐶) = -𝑒((𝑥 ·e 𝑦) ·e 𝐶))
7448, 49, 73syl2anc 691 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) ∧ (𝑦 ∈ ℝ* ∧ 0 < 𝑦)) → ((𝑥 ·e 𝑦) ·e -𝑒𝐶) = -𝑒((𝑥 ·e 𝑦) ·e 𝐶))
75 xmulneg2 11972 . . . . . . 7 ((𝑦 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑦 ·e -𝑒𝐶) = -𝑒(𝑦 ·e 𝐶))
7646, 49, 75syl2anc 691 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) ∧ (𝑦 ∈ ℝ* ∧ 0 < 𝑦)) → (𝑦 ·e -𝑒𝐶) = -𝑒(𝑦 ·e 𝐶))
7776oveq2d 6565 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) ∧ (𝑦 ∈ ℝ* ∧ 0 < 𝑦)) → (𝑥 ·e (𝑦 ·e -𝑒𝐶)) = (𝑥 ·e -𝑒(𝑦 ·e 𝐶)))
78 xmulneg2 11972 . . . . . 6 ((𝑥 ∈ ℝ* ∧ (𝑦 ·e 𝐶) ∈ ℝ*) → (𝑥 ·e -𝑒(𝑦 ·e 𝐶)) = -𝑒(𝑥 ·e (𝑦 ·e 𝐶)))
7945, 53, 78syl2anc 691 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) ∧ (𝑦 ∈ ℝ* ∧ 0 < 𝑦)) → (𝑥 ·e -𝑒(𝑦 ·e 𝐶)) = -𝑒(𝑥 ·e (𝑦 ·e 𝐶)))
8077, 79eqtrd 2644 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) ∧ (𝑦 ∈ ℝ* ∧ 0 < 𝑦)) → (𝑥 ·e (𝑦 ·e -𝑒𝐶)) = -𝑒(𝑥 ·e (𝑦 ·e 𝐶)))
8140, 44, 51, 55, 49, 58, 72, 74, 80xmulasslem 11987 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) ∧ (𝑦 ∈ ℝ* ∧ 0 < 𝑦)) → ((𝑥 ·e 𝑦) ·e 𝐶) = (𝑥 ·e (𝑦 ·e 𝐶)))
82 xmul02 11970 . . . . . . . 8 (𝐶 ∈ ℝ* → (0 ·e 𝐶) = 0)
83823ad2ant3 1077 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (0 ·e 𝐶) = 0)
8483adantr 480 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) → (0 ·e 𝐶) = 0)
8561ad2antrl 760 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) → (𝑥 ·e 0) = 0)
8684, 85eqtr4d 2647 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) → (0 ·e 𝐶) = (𝑥 ·e 0))
8785oveq1d 6564 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) → ((𝑥 ·e 0) ·e 𝐶) = (0 ·e 𝐶))
8884oveq2d 6565 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) → (𝑥 ·e (0 ·e 𝐶)) = (𝑥 ·e 0))
8986, 87, 883eqtr4d 2654 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) → ((𝑥 ·e 0) ·e 𝐶) = (𝑥 ·e (0 ·e 𝐶)))
90 oveq2 6557 . . . . . 6 (𝑦 = 0 → (𝑥 ·e 𝑦) = (𝑥 ·e 0))
9190oveq1d 6564 . . . . 5 (𝑦 = 0 → ((𝑥 ·e 𝑦) ·e 𝐶) = ((𝑥 ·e 0) ·e 𝐶))
92 oveq1 6556 . . . . . 6 (𝑦 = 0 → (𝑦 ·e 𝐶) = (0 ·e 𝐶))
9392oveq2d 6565 . . . . 5 (𝑦 = 0 → (𝑥 ·e (𝑦 ·e 𝐶)) = (𝑥 ·e (0 ·e 𝐶)))
9491, 93eqeq12d 2625 . . . 4 (𝑦 = 0 → (((𝑥 ·e 𝑦) ·e 𝐶) = (𝑥 ·e (𝑦 ·e 𝐶)) ↔ ((𝑥 ·e 0) ·e 𝐶) = (𝑥 ·e (0 ·e 𝐶))))
9589, 94syl5ibrcom 236 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) → (𝑦 = 0 → ((𝑥 ·e 𝑦) ·e 𝐶) = (𝑥 ·e (𝑦 ·e 𝐶))))
96 xmulneg2 11972 . . . . . 6 ((𝑥 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ·e -𝑒𝐵) = -𝑒(𝑥 ·e 𝐵))
9727, 28, 96syl2anc 691 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) → (𝑥 ·e -𝑒𝐵) = -𝑒(𝑥 ·e 𝐵))
9897oveq1d 6564 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) → ((𝑥 ·e -𝑒𝐵) ·e 𝐶) = (-𝑒(𝑥 ·e 𝐵) ·e 𝐶))
99 xmulneg1 11971 . . . . 5 (((𝑥 ·e 𝐵) ∈ ℝ*𝐶 ∈ ℝ*) → (-𝑒(𝑥 ·e 𝐵) ·e 𝐶) = -𝑒((𝑥 ·e 𝐵) ·e 𝐶))
10030, 31, 99syl2anc 691 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) → (-𝑒(𝑥 ·e 𝐵) ·e 𝐶) = -𝑒((𝑥 ·e 𝐵) ·e 𝐶))
10198, 100eqtrd 2644 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) → ((𝑥 ·e -𝑒𝐵) ·e 𝐶) = -𝑒((𝑥 ·e 𝐵) ·e 𝐶))
102 xmulneg1 11971 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (-𝑒𝐵 ·e 𝐶) = -𝑒(𝐵 ·e 𝐶))
10328, 31, 102syl2anc 691 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) → (-𝑒𝐵 ·e 𝐶) = -𝑒(𝐵 ·e 𝐶))
104103oveq2d 6565 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) → (𝑥 ·e (-𝑒𝐵 ·e 𝐶)) = (𝑥 ·e -𝑒(𝐵 ·e 𝐶)))
105 xmulneg2 11972 . . . . 5 ((𝑥 ∈ ℝ* ∧ (𝐵 ·e 𝐶) ∈ ℝ*) → (𝑥 ·e -𝑒(𝐵 ·e 𝐶)) = -𝑒(𝑥 ·e (𝐵 ·e 𝐶)))
10627, 34, 105syl2anc 691 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) → (𝑥 ·e -𝑒(𝐵 ·e 𝐶)) = -𝑒(𝑥 ·e (𝐵 ·e 𝐶)))
107104, 106eqtrd 2644 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) → (𝑥 ·e (-𝑒𝐵 ·e 𝐶)) = -𝑒(𝑥 ·e (𝐵 ·e 𝐶)))
10821, 26, 33, 36, 28, 81, 95, 101, 107xmulasslem 11987 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) → ((𝑥 ·e 𝐵) ·e 𝐶) = (𝑥 ·e (𝐵 ·e 𝐶)))
109 xmul02 11970 . . . . . 6 (𝐵 ∈ ℝ* → (0 ·e 𝐵) = 0)
1101093ad2ant2 1076 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (0 ·e 𝐵) = 0)
111110oveq1d 6564 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((0 ·e 𝐵) ·e 𝐶) = (0 ·e 𝐶))
112 xmul02 11970 . . . . 5 ((𝐵 ·e 𝐶) ∈ ℝ* → (0 ·e (𝐵 ·e 𝐶)) = 0)
11314, 112syl 17 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (0 ·e (𝐵 ·e 𝐶)) = 0)
11483, 111, 1133eqtr4d 2654 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((0 ·e 𝐵) ·e 𝐶) = (0 ·e (𝐵 ·e 𝐶)))
115 oveq1 6556 . . . . 5 (𝑥 = 0 → (𝑥 ·e 𝐵) = (0 ·e 𝐵))
116115oveq1d 6564 . . . 4 (𝑥 = 0 → ((𝑥 ·e 𝐵) ·e 𝐶) = ((0 ·e 𝐵) ·e 𝐶))
117 oveq1 6556 . . . 4 (𝑥 = 0 → (𝑥 ·e (𝐵 ·e 𝐶)) = (0 ·e (𝐵 ·e 𝐶)))
118116, 117eqeq12d 2625 . . 3 (𝑥 = 0 → (((𝑥 ·e 𝐵) ·e 𝐶) = (𝑥 ·e (𝐵 ·e 𝐶)) ↔ ((0 ·e 𝐵) ·e 𝐶) = (0 ·e (𝐵 ·e 𝐶))))
119114, 118syl5ibrcom 236 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 = 0 → ((𝑥 ·e 𝐵) ·e 𝐶) = (𝑥 ·e (𝐵 ·e 𝐶))))
120 xmulneg1 11971 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝐴 ·e 𝐵) = -𝑒(𝐴 ·e 𝐵))
1211203adant3 1074 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (-𝑒𝐴 ·e 𝐵) = -𝑒(𝐴 ·e 𝐵))
122121oveq1d 6564 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((-𝑒𝐴 ·e 𝐵) ·e 𝐶) = (-𝑒(𝐴 ·e 𝐵) ·e 𝐶))
123 xmulneg1 11971 . . . 4 (((𝐴 ·e 𝐵) ∈ ℝ*𝐶 ∈ ℝ*) → (-𝑒(𝐴 ·e 𝐵) ·e 𝐶) = -𝑒((𝐴 ·e 𝐵) ·e 𝐶))
1249, 123stoic3 1692 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (-𝑒(𝐴 ·e 𝐵) ·e 𝐶) = -𝑒((𝐴 ·e 𝐵) ·e 𝐶))
125122, 124eqtrd 2644 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((-𝑒𝐴 ·e 𝐵) ·e 𝐶) = -𝑒((𝐴 ·e 𝐵) ·e 𝐶))
126 xmulneg1 11971 . . 3 ((𝐴 ∈ ℝ* ∧ (𝐵 ·e 𝐶) ∈ ℝ*) → (-𝑒𝐴 ·e (𝐵 ·e 𝐶)) = -𝑒(𝐴 ·e (𝐵 ·e 𝐶)))
12712, 14, 126syl2anc 691 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (-𝑒𝐴 ·e (𝐵 ·e 𝐶)) = -𝑒(𝐴 ·e (𝐵 ·e 𝐶)))
1284, 8, 11, 16, 12, 108, 119, 125, 127xmulasslem 11987 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977   class class class wbr 4583  (class class class)co 6549  0cc0 9815  *cxr 9952   < clt 9953  -𝑒cxne 11819   ·e cxmu 11821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-xneg 11822  df-xmul 11824
This theorem is referenced by:  xlemul1  11992  xrsmcmn  19588  nmoi2  22344  xmulcand  28960  xreceu  28961  xdivrec  28966  xrge0slmod  29175
  Copyright terms: Public domain W3C validator