Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upbdrech Structured version   Visualization version   GIF version

Theorem upbdrech 38460
Description: Choice of an upper bound for a non empty bunded set (image set version). (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
upbdrech.a (𝜑𝐴 ≠ ∅)
upbdrech.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
upbdrech.bd (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
upbdrech.c 𝐶 = sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )
Assertion
Ref Expression
upbdrech (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑦,𝐵,𝑧   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑥)   𝐶(𝑥,𝑦,𝑧)

Proof of Theorem upbdrech
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 upbdrech.c . . 3 𝐶 = sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )
2 upbdrech.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
32ralrimiva 2949 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ℝ)
4 nfra1 2925 . . . . . . 7 𝑥𝑥𝐴 𝐵 ∈ ℝ
5 nfv 1830 . . . . . . 7 𝑥 𝑧 ∈ ℝ
6 simp3 1056 . . . . . . . . 9 ((∀𝑥𝐴 𝐵 ∈ ℝ ∧ 𝑥𝐴𝑧 = 𝐵) → 𝑧 = 𝐵)
7 rspa 2914 . . . . . . . . . 10 ((∀𝑥𝐴 𝐵 ∈ ℝ ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
873adant3 1074 . . . . . . . . 9 ((∀𝑥𝐴 𝐵 ∈ ℝ ∧ 𝑥𝐴𝑧 = 𝐵) → 𝐵 ∈ ℝ)
96, 8eqeltrd 2688 . . . . . . . 8 ((∀𝑥𝐴 𝐵 ∈ ℝ ∧ 𝑥𝐴𝑧 = 𝐵) → 𝑧 ∈ ℝ)
1093exp 1256 . . . . . . 7 (∀𝑥𝐴 𝐵 ∈ ℝ → (𝑥𝐴 → (𝑧 = 𝐵𝑧 ∈ ℝ)))
114, 5, 10rexlimd 3008 . . . . . 6 (∀𝑥𝐴 𝐵 ∈ ℝ → (∃𝑥𝐴 𝑧 = 𝐵𝑧 ∈ ℝ))
1211abssdv 3639 . . . . 5 (∀𝑥𝐴 𝐵 ∈ ℝ → {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ⊆ ℝ)
133, 12syl 17 . . . 4 (𝜑 → {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ⊆ ℝ)
14 upbdrech.a . . . . . . 7 (𝜑𝐴 ≠ ∅)
15 eqidd 2611 . . . . . . . 8 (𝑥𝐴𝐵 = 𝐵)
1615rgen 2906 . . . . . . 7 𝑥𝐴 𝐵 = 𝐵
17 r19.2z 4012 . . . . . . 7 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 = 𝐵) → ∃𝑥𝐴 𝐵 = 𝐵)
1814, 16, 17sylancl 693 . . . . . 6 (𝜑 → ∃𝑥𝐴 𝐵 = 𝐵)
19 nfv 1830 . . . . . . 7 𝑥𝜑
20 nfre1 2988 . . . . . . . 8 𝑥𝑥𝐴 𝑧 = 𝐵
2120nfex 2140 . . . . . . 7 𝑥𝑧𝑥𝐴 𝑧 = 𝐵
22 simpr 476 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝑥𝐴)
23 elex 3185 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ → 𝐵 ∈ V)
242, 23syl 17 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵 ∈ V)
25 isset 3180 . . . . . . . . . . . 12 (𝐵 ∈ V ↔ ∃𝑧 𝑧 = 𝐵)
2624, 25sylib 207 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ∃𝑧 𝑧 = 𝐵)
27 rspe 2986 . . . . . . . . . . 11 ((𝑥𝐴 ∧ ∃𝑧 𝑧 = 𝐵) → ∃𝑥𝐴𝑧 𝑧 = 𝐵)
2822, 26, 27syl2anc 691 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ∃𝑥𝐴𝑧 𝑧 = 𝐵)
29 rexcom4 3198 . . . . . . . . . 10 (∃𝑥𝐴𝑧 𝑧 = 𝐵 ↔ ∃𝑧𝑥𝐴 𝑧 = 𝐵)
3028, 29sylib 207 . . . . . . . . 9 ((𝜑𝑥𝐴) → ∃𝑧𝑥𝐴 𝑧 = 𝐵)
31303adant3 1074 . . . . . . . 8 ((𝜑𝑥𝐴𝐵 = 𝐵) → ∃𝑧𝑥𝐴 𝑧 = 𝐵)
32313exp 1256 . . . . . . 7 (𝜑 → (𝑥𝐴 → (𝐵 = 𝐵 → ∃𝑧𝑥𝐴 𝑧 = 𝐵)))
3319, 21, 32rexlimd 3008 . . . . . 6 (𝜑 → (∃𝑥𝐴 𝐵 = 𝐵 → ∃𝑧𝑥𝐴 𝑧 = 𝐵))
3418, 33mpd 15 . . . . 5 (𝜑 → ∃𝑧𝑥𝐴 𝑧 = 𝐵)
35 abn0 3908 . . . . 5 ({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ≠ ∅ ↔ ∃𝑧𝑥𝐴 𝑧 = 𝐵)
3634, 35sylibr 223 . . . 4 (𝜑 → {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ≠ ∅)
37 upbdrech.bd . . . . 5 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
38 vex 3176 . . . . . . . . . . . . 13 𝑤 ∈ V
39 eqeq1 2614 . . . . . . . . . . . . . 14 (𝑧 = 𝑤 → (𝑧 = 𝐵𝑤 = 𝐵))
4039rexbidv 3034 . . . . . . . . . . . . 13 (𝑧 = 𝑤 → (∃𝑥𝐴 𝑧 = 𝐵 ↔ ∃𝑥𝐴 𝑤 = 𝐵))
4138, 40elab 3319 . . . . . . . . . . . 12 (𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ↔ ∃𝑥𝐴 𝑤 = 𝐵)
4241biimpi 205 . . . . . . . . . . 11 (𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} → ∃𝑥𝐴 𝑤 = 𝐵)
4342adantl 481 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}) → ∃𝑥𝐴 𝑤 = 𝐵)
44 nfra1 2925 . . . . . . . . . . . . 13 𝑥𝑥𝐴 𝐵𝑦
4519, 44nfan 1816 . . . . . . . . . . . 12 𝑥(𝜑 ∧ ∀𝑥𝐴 𝐵𝑦)
4620nfsab 2602 . . . . . . . . . . . 12 𝑥 𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}
4745, 46nfan 1816 . . . . . . . . . . 11 𝑥((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
48 nfv 1830 . . . . . . . . . . 11 𝑥 𝑤𝑦
49 simp3 1056 . . . . . . . . . . . . . 14 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑥𝐴𝑤 = 𝐵) → 𝑤 = 𝐵)
50 simp1r 1079 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑥𝐴𝑤 = 𝐵) → ∀𝑥𝐴 𝐵𝑦)
51 simp2 1055 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑥𝐴𝑤 = 𝐵) → 𝑥𝐴)
52 rspa 2914 . . . . . . . . . . . . . . 15 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴) → 𝐵𝑦)
5350, 51, 52syl2anc 691 . . . . . . . . . . . . . 14 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑥𝐴𝑤 = 𝐵) → 𝐵𝑦)
5449, 53eqbrtrd 4605 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑥𝐴𝑤 = 𝐵) → 𝑤𝑦)
55543exp 1256 . . . . . . . . . . . 12 ((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) → (𝑥𝐴 → (𝑤 = 𝐵𝑤𝑦)))
5655adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}) → (𝑥𝐴 → (𝑤 = 𝐵𝑤𝑦)))
5747, 48, 56rexlimd 3008 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}) → (∃𝑥𝐴 𝑤 = 𝐵𝑤𝑦))
5843, 57mpd 15 . . . . . . . . 9 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}) → 𝑤𝑦)
5958ralrimiva 2949 . . . . . . . 8 ((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) → ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦)
60593adant2 1073 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) → ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦)
61603exp 1256 . . . . . 6 (𝜑 → (𝑦 ∈ ℝ → (∀𝑥𝐴 𝐵𝑦 → ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦)))
6261reximdvai 2998 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦 → ∃𝑦 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦))
6337, 62mpd 15 . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦)
64 suprcl 10862 . . . 4 (({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦) → sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ) ∈ ℝ)
6513, 36, 63, 64syl3anc 1318 . . 3 (𝜑 → sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ) ∈ ℝ)
661, 65syl5eqel 2692 . 2 (𝜑𝐶 ∈ ℝ)
6713adantr 480 . . . . 5 ((𝜑𝑥𝐴) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ⊆ ℝ)
6830, 35sylibr 223 . . . . 5 ((𝜑𝑥𝐴) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ≠ ∅)
6963adantr 480 . . . . 5 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦)
70 elabrexg 38229 . . . . . 6 ((𝑥𝐴𝐵 ∈ ℝ) → 𝐵 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
7122, 2, 70syl2anc 691 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
72 suprub 10863 . . . . 5 ((({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦) ∧ 𝐵 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}) → 𝐵 ≤ sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ))
7367, 68, 69, 71, 72syl31anc 1321 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ≤ sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ))
7473, 1syl6breqr 4625 . . 3 ((𝜑𝑥𝐴) → 𝐵𝐶)
7574ralrimiva 2949 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
7666, 75jca 553 1 (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  {cab 2596  wne 2780  wral 2896  wrex 2897  Vcvv 3173  wss 3540  c0 3874   class class class wbr 4583  supcsup 8229  cr 9814   < clt 9953  cle 9954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148
This theorem is referenced by:  upbdrech2  38463
  Copyright terms: Public domain W3C validator