MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uffinfix Structured version   Visualization version   GIF version

Theorem uffinfix 21541
Description: An ultrafilter containing a finite element is fixed. (Contributed by Jeff Hankins, 5-Dec-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
uffinfix ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆𝐹𝑆 ∈ Fin) → ∃𝑥𝑋 𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦})
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)

Proof of Theorem uffinfix
StepHypRef Expression
1 ufilfil 21518 . . 3 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
2 filfinnfr 21491 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑆𝐹𝑆 ∈ Fin) → 𝐹 ≠ ∅)
31, 2syl3an1 1351 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆𝐹𝑆 ∈ Fin) → 𝐹 ≠ ∅)
4 uffix2 21538 . . 3 (𝐹 ∈ (UFil‘𝑋) → ( 𝐹 ≠ ∅ ↔ ∃𝑥𝑋 𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦}))
543ad2ant1 1075 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆𝐹𝑆 ∈ Fin) → ( 𝐹 ≠ ∅ ↔ ∃𝑥𝑋 𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦}))
63, 5mpbid 221 1 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆𝐹𝑆 ∈ Fin) → ∃𝑥𝑋 𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wrex 2897  {crab 2900  c0 3874  𝒫 cpw 4108   cint 4410  cfv 5804  Fincfn 7841  Filcfil 21459  UFilcufil 21513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fbas 19564  df-fg 19565  df-fil 21460  df-ufil 21515
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator