Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufilfil Structured version   Visualization version   GIF version

Theorem ufilfil 21518
 Description: An ultrafilter is a filter. (Contributed by Jeff Hankins, 1-Dec-2009.) (Revised by Mario Carneiro, 29-Jul-2015.)
Assertion
Ref Expression
ufilfil (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))

Proof of Theorem ufilfil
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isufil 21517 . 2 (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋(𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹)))
21simplbi 475 1 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 382   ∈ wcel 1977  ∀wral 2896   ∖ cdif 3537  𝒫 cpw 4108  ‘cfv 5804  Filcfil 21459  UFilcufil 21513 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fv 5812  df-ufil 21515 This theorem is referenced by:  ufilb  21520  isufil2  21522  ufprim  21523  trufil  21524  ufileu  21533  filufint  21534  uffixfr  21537  uffix2  21538  uffixsn  21539  uffinfix  21541  cfinufil  21542  ufilen  21544  ufildr  21545  fmufil  21573  ufldom  21576  uffclsflim  21645  ufilcmp  21646  uffcfflf  21653  alexsublem  21658
 Copyright terms: Public domain W3C validator