Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgpt1 Structured version   Visualization version   GIF version

Theorem tgpt1 21731
 Description: Hausdorff and T1 are equivalent for topological groups. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypothesis
Ref Expression
tgpt1.j 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
tgpt1 (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ 𝐽 ∈ Fre))

Proof of Theorem tgpt1
StepHypRef Expression
1 haust1 20966 . 2 (𝐽 ∈ Haus → 𝐽 ∈ Fre)
2 tgpgrp 21692 . . . . . 6 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
3 eqid 2610 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
4 eqid 2610 . . . . . . 7 (0g𝐺) = (0g𝐺)
53, 4grpidcl 17273 . . . . . 6 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
62, 5syl 17 . . . . 5 (𝐺 ∈ TopGrp → (0g𝐺) ∈ (Base‘𝐺))
7 tgpt1.j . . . . . . 7 𝐽 = (TopOpen‘𝐺)
87, 3tgptopon 21696 . . . . . 6 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
9 toponuni 20542 . . . . . 6 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → (Base‘𝐺) = 𝐽)
108, 9syl 17 . . . . 5 (𝐺 ∈ TopGrp → (Base‘𝐺) = 𝐽)
116, 10eleqtrd 2690 . . . 4 (𝐺 ∈ TopGrp → (0g𝐺) ∈ 𝐽)
12 eqid 2610 . . . . . 6 𝐽 = 𝐽
1312t1sncld 20940 . . . . 5 ((𝐽 ∈ Fre ∧ (0g𝐺) ∈ 𝐽) → {(0g𝐺)} ∈ (Clsd‘𝐽))
1413expcom 450 . . . 4 ((0g𝐺) ∈ 𝐽 → (𝐽 ∈ Fre → {(0g𝐺)} ∈ (Clsd‘𝐽)))
1511, 14syl 17 . . 3 (𝐺 ∈ TopGrp → (𝐽 ∈ Fre → {(0g𝐺)} ∈ (Clsd‘𝐽)))
164, 7tgphaus 21730 . . 3 (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ {(0g𝐺)} ∈ (Clsd‘𝐽)))
1715, 16sylibrd 248 . 2 (𝐺 ∈ TopGrp → (𝐽 ∈ Fre → 𝐽 ∈ Haus))
181, 17impbid2 215 1 (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ 𝐽 ∈ Fre))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   = wceq 1475   ∈ wcel 1977  {csn 4125  ∪ cuni 4372  ‘cfv 5804  Basecbs 15695  TopOpenctopn 15905  0gc0g 15923  Grpcgrp 17245  TopOnctopon 20518  Clsdccld 20630  Frect1 20921  Hauscha 20922  TopGrpctgp 21685 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-map 7746  df-0g 15925  df-topgen 15927  df-plusf 17064  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-cn 20841  df-t1 20928  df-haus 20929  df-tx 21175  df-tmd 21686  df-tgp 21687 This theorem is referenced by:  tgpt0  21732
 Copyright terms: Public domain W3C validator