MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcn Structured version   Visualization version   GIF version

Theorem tgcn 20866
Description: The continuity predicate when the range is given by a basis for a topology. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
tgcn.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
tgcn.3 (𝜑𝐾 = (topGen‘𝐵))
tgcn.4 (𝜑𝐾 ∈ (TopOn‘𝑌))
Assertion
Ref Expression
tgcn (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐹   𝑦,𝐽   𝑦,𝐾   𝑦,𝑋   𝑦,𝑌
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem tgcn
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgcn.1 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 tgcn.4 . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 iscn 20849 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
41, 2, 3syl2anc 691 . 2 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
5 tgcn.3 . . . . . . . . 9 (𝜑𝐾 = (topGen‘𝐵))
6 topontop 20541 . . . . . . . . . 10 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
72, 6syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ Top)
85, 7eqeltrrd 2689 . . . . . . . 8 (𝜑 → (topGen‘𝐵) ∈ Top)
9 tgclb 20585 . . . . . . . 8 (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top)
108, 9sylibr 223 . . . . . . 7 (𝜑𝐵 ∈ TopBases)
11 bastg 20581 . . . . . . 7 (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵))
1210, 11syl 17 . . . . . 6 (𝜑𝐵 ⊆ (topGen‘𝐵))
1312, 5sseqtr4d 3605 . . . . 5 (𝜑𝐵𝐾)
14 ssralv 3629 . . . . 5 (𝐵𝐾 → (∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽 → ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽))
1513, 14syl 17 . . . 4 (𝜑 → (∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽 → ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽))
165eleq2d 2673 . . . . . . . . 9 (𝜑 → (𝑥𝐾𝑥 ∈ (topGen‘𝐵)))
17 eltg3 20577 . . . . . . . . . 10 (𝐵 ∈ TopBases → (𝑥 ∈ (topGen‘𝐵) ↔ ∃𝑧(𝑧𝐵𝑥 = 𝑧)))
1810, 17syl 17 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (topGen‘𝐵) ↔ ∃𝑧(𝑧𝐵𝑥 = 𝑧)))
1916, 18bitrd 267 . . . . . . . 8 (𝜑 → (𝑥𝐾 ↔ ∃𝑧(𝑧𝐵𝑥 = 𝑧)))
20 ssralv 3629 . . . . . . . . . . . 12 (𝑧𝐵 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → ∀𝑦𝑧 (𝐹𝑦) ∈ 𝐽))
21 topontop 20541 . . . . . . . . . . . . . 14 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
221, 21syl 17 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ Top)
23 iunopn 20528 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ ∀𝑦𝑧 (𝐹𝑦) ∈ 𝐽) → 𝑦𝑧 (𝐹𝑦) ∈ 𝐽)
2423ex 449 . . . . . . . . . . . . 13 (𝐽 ∈ Top → (∀𝑦𝑧 (𝐹𝑦) ∈ 𝐽 𝑦𝑧 (𝐹𝑦) ∈ 𝐽))
2522, 24syl 17 . . . . . . . . . . . 12 (𝜑 → (∀𝑦𝑧 (𝐹𝑦) ∈ 𝐽 𝑦𝑧 (𝐹𝑦) ∈ 𝐽))
2620, 25sylan9r 688 . . . . . . . . . . 11 ((𝜑𝑧𝐵) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 𝑦𝑧 (𝐹𝑦) ∈ 𝐽))
27 imaeq2 5381 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹 𝑧))
28 imauni 6408 . . . . . . . . . . . . . 14 (𝐹 𝑧) = 𝑦𝑧 (𝐹𝑦)
2927, 28syl6eq 2660 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝐹𝑥) = 𝑦𝑧 (𝐹𝑦))
3029eleq1d 2672 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝐹𝑥) ∈ 𝐽 𝑦𝑧 (𝐹𝑦) ∈ 𝐽))
3130imbi2d 329 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽) ↔ (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 𝑦𝑧 (𝐹𝑦) ∈ 𝐽)))
3226, 31syl5ibrcom 236 . . . . . . . . . 10 ((𝜑𝑧𝐵) → (𝑥 = 𝑧 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽)))
3332expimpd 627 . . . . . . . . 9 (𝜑 → ((𝑧𝐵𝑥 = 𝑧) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽)))
3433exlimdv 1848 . . . . . . . 8 (𝜑 → (∃𝑧(𝑧𝐵𝑥 = 𝑧) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽)))
3519, 34sylbid 229 . . . . . . 7 (𝜑 → (𝑥𝐾 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽)))
3635imp 444 . . . . . 6 ((𝜑𝑥𝐾) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽))
3736ralrimdva 2952 . . . . 5 (𝜑 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽))
38 imaeq2 5381 . . . . . . 7 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
3938eleq1d 2672 . . . . . 6 (𝑥 = 𝑦 → ((𝐹𝑥) ∈ 𝐽 ↔ (𝐹𝑦) ∈ 𝐽))
4039cbvralv 3147 . . . . 5 (∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽 ↔ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)
4137, 40syl6ib 240 . . . 4 (𝜑 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽))
4215, 41impbid 201 . . 3 (𝜑 → (∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽 ↔ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽))
4342anbi2d 736 . 2 (𝜑 → ((𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)))
444, 43bitrd 267 1 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  wral 2896  wss 3540   cuni 4372   ciun 4455  ccnv 5037  cima 5041  wf 5800  cfv 5804  (class class class)co 6549  topGenctg 15921  Topctop 20517  TopOnctopon 20518  TopBasesctb 20520   Cn ccn 20838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-topgen 15927  df-top 20521  df-bases 20522  df-topon 20523  df-cn 20841
This theorem is referenced by:  subbascn  20868  txcnmpt  21237  ismtyhmeolem  32773
  Copyright terms: Public domain W3C validator