Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismtyhmeolem Structured version   Visualization version   GIF version

Theorem ismtyhmeolem 32773
Description: Lemma for ismtyhmeo 32774. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.)
Hypotheses
Ref Expression
ismtyhmeo.1 𝐽 = (MetOpen‘𝑀)
ismtyhmeo.2 𝐾 = (MetOpen‘𝑁)
ismtyhmeolem.3 (𝜑𝑀 ∈ (∞Met‘𝑋))
ismtyhmeolem.4 (𝜑𝑁 ∈ (∞Met‘𝑌))
ismtyhmeolem.5 (𝜑𝐹 ∈ (𝑀 Ismty 𝑁))
Assertion
Ref Expression
ismtyhmeolem (𝜑𝐹 ∈ (𝐽 Cn 𝐾))

Proof of Theorem ismtyhmeolem
Dummy variables 𝑢 𝑟 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismtyhmeolem.5 . . . . 5 (𝜑𝐹 ∈ (𝑀 Ismty 𝑁))
2 ismtyhmeolem.3 . . . . . 6 (𝜑𝑀 ∈ (∞Met‘𝑋))
3 ismtyhmeolem.4 . . . . . 6 (𝜑𝑁 ∈ (∞Met‘𝑌))
4 isismty 32770 . . . . . 6 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) ↔ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))))
52, 3, 4syl2anc 691 . . . . 5 (𝜑 → (𝐹 ∈ (𝑀 Ismty 𝑁) ↔ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))))
61, 5mpbid 221 . . . 4 (𝜑 → (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))))
76simpld 474 . . 3 (𝜑𝐹:𝑋1-1-onto𝑌)
8 f1of 6050 . . 3 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋𝑌)
97, 8syl 17 . 2 (𝜑𝐹:𝑋𝑌)
103adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → 𝑁 ∈ (∞Met‘𝑌))
112adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → 𝑀 ∈ (∞Met‘𝑋))
12 ismtycnv 32771 . . . . . . . . . 10 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) → 𝐹 ∈ (𝑁 Ismty 𝑀)))
132, 3, 12syl2anc 691 . . . . . . . . 9 (𝜑 → (𝐹 ∈ (𝑀 Ismty 𝑁) → 𝐹 ∈ (𝑁 Ismty 𝑀)))
141, 13mpd 15 . . . . . . . 8 (𝜑𝐹 ∈ (𝑁 Ismty 𝑀))
1514adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → 𝐹 ∈ (𝑁 Ismty 𝑀))
16 simprl 790 . . . . . . 7 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → 𝑤𝑌)
17 simprr 792 . . . . . . 7 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → 𝑟 ∈ ℝ*)
18 ismtyima 32772 . . . . . . 7 (((𝑁 ∈ (∞Met‘𝑌) ∧ 𝑀 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑁 Ismty 𝑀)) ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → (𝐹 “ (𝑤(ball‘𝑁)𝑟)) = ((𝐹𝑤)(ball‘𝑀)𝑟))
1910, 11, 15, 16, 17, 18syl32anc 1326 . . . . . 6 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → (𝐹 “ (𝑤(ball‘𝑁)𝑟)) = ((𝐹𝑤)(ball‘𝑀)𝑟))
20 f1ocnv 6062 . . . . . . . . 9 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
21 f1of 6050 . . . . . . . . 9 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
227, 20, 213syl 18 . . . . . . . 8 (𝜑𝐹:𝑌𝑋)
23 simpl 472 . . . . . . . 8 ((𝑤𝑌𝑟 ∈ ℝ*) → 𝑤𝑌)
24 ffvelrn 6265 . . . . . . . 8 ((𝐹:𝑌𝑋𝑤𝑌) → (𝐹𝑤) ∈ 𝑋)
2522, 23, 24syl2an 493 . . . . . . 7 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → (𝐹𝑤) ∈ 𝑋)
26 ismtyhmeo.1 . . . . . . . 8 𝐽 = (MetOpen‘𝑀)
2726blopn 22115 . . . . . . 7 ((𝑀 ∈ (∞Met‘𝑋) ∧ (𝐹𝑤) ∈ 𝑋𝑟 ∈ ℝ*) → ((𝐹𝑤)(ball‘𝑀)𝑟) ∈ 𝐽)
2811, 25, 17, 27syl3anc 1318 . . . . . 6 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → ((𝐹𝑤)(ball‘𝑀)𝑟) ∈ 𝐽)
2919, 28eqeltrd 2688 . . . . 5 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → (𝐹 “ (𝑤(ball‘𝑁)𝑟)) ∈ 𝐽)
3029ralrimivva 2954 . . . 4 (𝜑 → ∀𝑤𝑌𝑟 ∈ ℝ* (𝐹 “ (𝑤(ball‘𝑁)𝑟)) ∈ 𝐽)
31 fveq2 6103 . . . . . . . 8 (𝑧 = ⟨𝑤, 𝑟⟩ → ((ball‘𝑁)‘𝑧) = ((ball‘𝑁)‘⟨𝑤, 𝑟⟩))
32 df-ov 6552 . . . . . . . 8 (𝑤(ball‘𝑁)𝑟) = ((ball‘𝑁)‘⟨𝑤, 𝑟⟩)
3331, 32syl6eqr 2662 . . . . . . 7 (𝑧 = ⟨𝑤, 𝑟⟩ → ((ball‘𝑁)‘𝑧) = (𝑤(ball‘𝑁)𝑟))
3433imaeq2d 5385 . . . . . 6 (𝑧 = ⟨𝑤, 𝑟⟩ → (𝐹 “ ((ball‘𝑁)‘𝑧)) = (𝐹 “ (𝑤(ball‘𝑁)𝑟)))
3534eleq1d 2672 . . . . 5 (𝑧 = ⟨𝑤, 𝑟⟩ → ((𝐹 “ ((ball‘𝑁)‘𝑧)) ∈ 𝐽 ↔ (𝐹 “ (𝑤(ball‘𝑁)𝑟)) ∈ 𝐽))
3635ralxp 5185 . . . 4 (∀𝑧 ∈ (𝑌 × ℝ*)(𝐹 “ ((ball‘𝑁)‘𝑧)) ∈ 𝐽 ↔ ∀𝑤𝑌𝑟 ∈ ℝ* (𝐹 “ (𝑤(ball‘𝑁)𝑟)) ∈ 𝐽)
3730, 36sylibr 223 . . 3 (𝜑 → ∀𝑧 ∈ (𝑌 × ℝ*)(𝐹 “ ((ball‘𝑁)‘𝑧)) ∈ 𝐽)
38 blf 22022 . . . 4 (𝑁 ∈ (∞Met‘𝑌) → (ball‘𝑁):(𝑌 × ℝ*)⟶𝒫 𝑌)
39 ffn 5958 . . . 4 ((ball‘𝑁):(𝑌 × ℝ*)⟶𝒫 𝑌 → (ball‘𝑁) Fn (𝑌 × ℝ*))
40 imaeq2 5381 . . . . . 6 (𝑢 = ((ball‘𝑁)‘𝑧) → (𝐹𝑢) = (𝐹 “ ((ball‘𝑁)‘𝑧)))
4140eleq1d 2672 . . . . 5 (𝑢 = ((ball‘𝑁)‘𝑧) → ((𝐹𝑢) ∈ 𝐽 ↔ (𝐹 “ ((ball‘𝑁)‘𝑧)) ∈ 𝐽))
4241ralrn 6270 . . . 4 ((ball‘𝑁) Fn (𝑌 × ℝ*) → (∀𝑢 ∈ ran (ball‘𝑁)(𝐹𝑢) ∈ 𝐽 ↔ ∀𝑧 ∈ (𝑌 × ℝ*)(𝐹 “ ((ball‘𝑁)‘𝑧)) ∈ 𝐽))
433, 38, 39, 424syl 19 . . 3 (𝜑 → (∀𝑢 ∈ ran (ball‘𝑁)(𝐹𝑢) ∈ 𝐽 ↔ ∀𝑧 ∈ (𝑌 × ℝ*)(𝐹 “ ((ball‘𝑁)‘𝑧)) ∈ 𝐽))
4437, 43mpbird 246 . 2 (𝜑 → ∀𝑢 ∈ ran (ball‘𝑁)(𝐹𝑢) ∈ 𝐽)
4526mopntopon 22054 . . . 4 (𝑀 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
462, 45syl 17 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
47 ismtyhmeo.2 . . . . 5 𝐾 = (MetOpen‘𝑁)
4847mopnval 22053 . . . 4 (𝑁 ∈ (∞Met‘𝑌) → 𝐾 = (topGen‘ran (ball‘𝑁)))
493, 48syl 17 . . 3 (𝜑𝐾 = (topGen‘ran (ball‘𝑁)))
5047mopntopon 22054 . . . 4 (𝑁 ∈ (∞Met‘𝑌) → 𝐾 ∈ (TopOn‘𝑌))
513, 50syl 17 . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
5246, 49, 51tgcn 20866 . 2 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢 ∈ ran (ball‘𝑁)(𝐹𝑢) ∈ 𝐽)))
539, 44, 52mpbir2and 959 1 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  𝒫 cpw 4108  cop 4131   × cxp 5036  ccnv 5037  ran crn 5039  cima 5041   Fn wfn 5799  wf 5800  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  *cxr 9952  topGenctg 15921  ∞Metcxmt 19552  ballcbl 19554  MetOpencmopn 19557  TopOnctopon 20518   Cn ccn 20838   Ismty cismty 32767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cn 20841  df-ismty 32768
This theorem is referenced by:  ismtyhmeo  32774
  Copyright terms: Public domain W3C validator