MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcn Structured version   Visualization version   Unicode version

Theorem tgcn 20345
Description: The continuity predicate when the range is given by a basis for a topology. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
tgcn.1  |-  ( ph  ->  J  e.  (TopOn `  X ) )
tgcn.3  |-  ( ph  ->  K  =  ( topGen `  B ) )
tgcn.4  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
Assertion
Ref Expression
tgcn  |-  ( ph  ->  ( F  e.  ( J  Cn  K )  <-> 
( F : X --> Y  /\  A. y  e.  B  ( `' F " y )  e.  J
) ) )
Distinct variable groups:    y, B    y, F    y, J    y, K    y, X    y, Y
Allowed substitution hint:    ph( y)

Proof of Theorem tgcn
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgcn.1 . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 tgcn.4 . . 3  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
3 iscn 20328 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. y  e.  K  ( `' F " y )  e.  J ) ) )
41, 2, 3syl2anc 673 . 2  |-  ( ph  ->  ( F  e.  ( J  Cn  K )  <-> 
( F : X --> Y  /\  A. y  e.  K  ( `' F " y )  e.  J
) ) )
5 tgcn.3 . . . . . . . . 9  |-  ( ph  ->  K  =  ( topGen `  B ) )
6 topontop 20018 . . . . . . . . . 10  |-  ( K  e.  (TopOn `  Y
)  ->  K  e.  Top )
72, 6syl 17 . . . . . . . . 9  |-  ( ph  ->  K  e.  Top )
85, 7eqeltrrd 2550 . . . . . . . 8  |-  ( ph  ->  ( topGen `  B )  e.  Top )
9 tgclb 20063 . . . . . . . 8  |-  ( B  e.  TopBases 
<->  ( topGen `  B )  e.  Top )
108, 9sylibr 217 . . . . . . 7  |-  ( ph  ->  B  e.  TopBases )
11 bastg 20058 . . . . . . 7  |-  ( B  e.  TopBases  ->  B  C_  ( topGen `
 B ) )
1210, 11syl 17 . . . . . 6  |-  ( ph  ->  B  C_  ( topGen `  B ) )
1312, 5sseqtr4d 3455 . . . . 5  |-  ( ph  ->  B  C_  K )
14 ssralv 3479 . . . . 5  |-  ( B 
C_  K  ->  ( A. y  e.  K  ( `' F " y )  e.  J  ->  A. y  e.  B  ( `' F " y )  e.  J ) )
1513, 14syl 17 . . . 4  |-  ( ph  ->  ( A. y  e.  K  ( `' F " y )  e.  J  ->  A. y  e.  B  ( `' F " y )  e.  J ) )
165eleq2d 2534 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  K  <->  x  e.  ( topGen `  B
) ) )
17 eltg3 20054 . . . . . . . . . 10  |-  ( B  e.  TopBases  ->  ( x  e.  ( topGen `  B )  <->  E. z ( z  C_  B  /\  x  =  U. z ) ) )
1810, 17syl 17 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  (
topGen `  B )  <->  E. z
( z  C_  B  /\  x  =  U. z ) ) )
1916, 18bitrd 261 . . . . . . . 8  |-  ( ph  ->  ( x  e.  K  <->  E. z ( z  C_  B  /\  x  =  U. z ) ) )
20 ssralv 3479 . . . . . . . . . . . 12  |-  ( z 
C_  B  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  A. y  e.  z  ( `' F " y )  e.  J ) )
21 topontop 20018 . . . . . . . . . . . . . 14  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
221, 21syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  J  e.  Top )
23 iunopn 20005 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  A. y  e.  z  ( `' F " y )  e.  J )  ->  U_ y  e.  z 
( `' F "
y )  e.  J
)
2423ex 441 . . . . . . . . . . . . 13  |-  ( J  e.  Top  ->  ( A. y  e.  z 
( `' F "
y )  e.  J  ->  U_ y  e.  z  ( `' F "
y )  e.  J
) )
2522, 24syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( A. y  e.  z  ( `' F " y )  e.  J  ->  U_ y  e.  z  ( `' F "
y )  e.  J
) )
2620, 25sylan9r 670 . . . . . . . . . . 11  |-  ( (
ph  /\  z  C_  B )  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  U_ y  e.  z  ( `' F " y )  e.  J ) )
27 imaeq2 5170 . . . . . . . . . . . . . 14  |-  ( x  =  U. z  -> 
( `' F "
x )  =  ( `' F " U. z
) )
28 imauni 6169 . . . . . . . . . . . . . 14  |-  ( `' F " U. z
)  =  U_ y  e.  z  ( `' F " y )
2927, 28syl6eq 2521 . . . . . . . . . . . . 13  |-  ( x  =  U. z  -> 
( `' F "
x )  =  U_ y  e.  z  ( `' F " y ) )
3029eleq1d 2533 . . . . . . . . . . . 12  |-  ( x  =  U. z  -> 
( ( `' F " x )  e.  J  <->  U_ y  e.  z  ( `' F " y )  e.  J ) )
3130imbi2d 323 . . . . . . . . . . 11  |-  ( x  =  U. z  -> 
( ( A. y  e.  B  ( `' F " y )  e.  J  ->  ( `' F " x )  e.  J )  <->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  U_ y  e.  z  ( `' F " y )  e.  J ) ) )
3226, 31syl5ibrcom 230 . . . . . . . . . 10  |-  ( (
ph  /\  z  C_  B )  ->  (
x  =  U. z  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  ( `' F "
x )  e.  J
) ) )
3332expimpd 614 . . . . . . . . 9  |-  ( ph  ->  ( ( z  C_  B  /\  x  =  U. z )  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  ( `' F " x )  e.  J ) ) )
3433exlimdv 1787 . . . . . . . 8  |-  ( ph  ->  ( E. z ( z  C_  B  /\  x  =  U. z
)  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  ( `' F " x )  e.  J ) ) )
3519, 34sylbid 223 . . . . . . 7  |-  ( ph  ->  ( x  e.  K  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  ( `' F "
x )  e.  J
) ) )
3635imp 436 . . . . . 6  |-  ( (
ph  /\  x  e.  K )  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  ( `' F " x )  e.  J ) )
3736ralrimdva 2812 . . . . 5  |-  ( ph  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  A. x  e.  K  ( `' F " x )  e.  J ) )
38 imaeq2 5170 . . . . . . 7  |-  ( x  =  y  ->  ( `' F " x )  =  ( `' F " y ) )
3938eleq1d 2533 . . . . . 6  |-  ( x  =  y  ->  (
( `' F "
x )  e.  J  <->  ( `' F " y )  e.  J ) )
4039cbvralv 3005 . . . . 5  |-  ( A. x  e.  K  ( `' F " x )  e.  J  <->  A. y  e.  K  ( `' F " y )  e.  J )
4137, 40syl6ib 234 . . . 4  |-  ( ph  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  A. y  e.  K  ( `' F " y )  e.  J ) )
4215, 41impbid 195 . . 3  |-  ( ph  ->  ( A. y  e.  K  ( `' F " y )  e.  J  <->  A. y  e.  B  ( `' F " y )  e.  J ) )
4342anbi2d 718 . 2  |-  ( ph  ->  ( ( F : X
--> Y  /\  A. y  e.  K  ( `' F " y )  e.  J )  <->  ( F : X --> Y  /\  A. y  e.  B  ( `' F " y )  e.  J ) ) )
444, 43bitrd 261 1  |-  ( ph  ->  ( F  e.  ( J  Cn  K )  <-> 
( F : X --> Y  /\  A. y  e.  B  ( `' F " y )  e.  J
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452   E.wex 1671    e. wcel 1904   A.wral 2756    C_ wss 3390   U.cuni 4190   U_ciun 4269   `'ccnv 4838   "cima 4842   -->wf 5585   ` cfv 5589  (class class class)co 6308   topGenctg 15414   Topctop 19994  TopOnctopon 19995   TopBasesctb 19997    Cn ccn 20317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-map 7492  df-topgen 15420  df-top 19998  df-bases 19999  df-topon 20000  df-cn 20320
This theorem is referenced by:  subbascn  20347  txcnmpt  20716  ismtyhmeolem  32200
  Copyright terms: Public domain W3C validator