MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcn Structured version   Unicode version

Theorem tgcn 20199
Description: The continuity predicate when the range is given by a basis for a topology. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
tgcn.1  |-  ( ph  ->  J  e.  (TopOn `  X ) )
tgcn.3  |-  ( ph  ->  K  =  ( topGen `  B ) )
tgcn.4  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
Assertion
Ref Expression
tgcn  |-  ( ph  ->  ( F  e.  ( J  Cn  K )  <-> 
( F : X --> Y  /\  A. y  e.  B  ( `' F " y )  e.  J
) ) )
Distinct variable groups:    y, B    y, F    y, J    y, K    y, X    y, Y
Allowed substitution hint:    ph( y)

Proof of Theorem tgcn
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgcn.1 . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 tgcn.4 . . 3  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
3 iscn 20182 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. y  e.  K  ( `' F " y )  e.  J ) ) )
41, 2, 3syl2anc 665 . 2  |-  ( ph  ->  ( F  e.  ( J  Cn  K )  <-> 
( F : X --> Y  /\  A. y  e.  K  ( `' F " y )  e.  J
) ) )
5 tgcn.3 . . . . . . . . 9  |-  ( ph  ->  K  =  ( topGen `  B ) )
6 topontop 19872 . . . . . . . . . 10  |-  ( K  e.  (TopOn `  Y
)  ->  K  e.  Top )
72, 6syl 17 . . . . . . . . 9  |-  ( ph  ->  K  e.  Top )
85, 7eqeltrrd 2518 . . . . . . . 8  |-  ( ph  ->  ( topGen `  B )  e.  Top )
9 tgclb 19917 . . . . . . . 8  |-  ( B  e.  TopBases 
<->  ( topGen `  B )  e.  Top )
108, 9sylibr 215 . . . . . . 7  |-  ( ph  ->  B  e.  TopBases )
11 bastg 19912 . . . . . . 7  |-  ( B  e.  TopBases  ->  B  C_  ( topGen `
 B ) )
1210, 11syl 17 . . . . . 6  |-  ( ph  ->  B  C_  ( topGen `  B ) )
1312, 5sseqtr4d 3507 . . . . 5  |-  ( ph  ->  B  C_  K )
14 ssralv 3531 . . . . 5  |-  ( B 
C_  K  ->  ( A. y  e.  K  ( `' F " y )  e.  J  ->  A. y  e.  B  ( `' F " y )  e.  J ) )
1513, 14syl 17 . . . 4  |-  ( ph  ->  ( A. y  e.  K  ( `' F " y )  e.  J  ->  A. y  e.  B  ( `' F " y )  e.  J ) )
165eleq2d 2499 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  K  <->  x  e.  ( topGen `  B
) ) )
17 eltg3 19908 . . . . . . . . . 10  |-  ( B  e.  TopBases  ->  ( x  e.  ( topGen `  B )  <->  E. z ( z  C_  B  /\  x  =  U. z ) ) )
1810, 17syl 17 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  (
topGen `  B )  <->  E. z
( z  C_  B  /\  x  =  U. z ) ) )
1916, 18bitrd 256 . . . . . . . 8  |-  ( ph  ->  ( x  e.  K  <->  E. z ( z  C_  B  /\  x  =  U. z ) ) )
20 ssralv 3531 . . . . . . . . . . . 12  |-  ( z 
C_  B  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  A. y  e.  z  ( `' F " y )  e.  J ) )
21 topontop 19872 . . . . . . . . . . . . . 14  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
221, 21syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  J  e.  Top )
23 iunopn 19859 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  A. y  e.  z  ( `' F " y )  e.  J )  ->  U_ y  e.  z 
( `' F "
y )  e.  J
)
2423ex 435 . . . . . . . . . . . . 13  |-  ( J  e.  Top  ->  ( A. y  e.  z 
( `' F "
y )  e.  J  ->  U_ y  e.  z  ( `' F "
y )  e.  J
) )
2522, 24syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( A. y  e.  z  ( `' F " y )  e.  J  ->  U_ y  e.  z  ( `' F "
y )  e.  J
) )
2620, 25sylan9r 662 . . . . . . . . . . 11  |-  ( (
ph  /\  z  C_  B )  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  U_ y  e.  z  ( `' F " y )  e.  J ) )
27 imaeq2 5184 . . . . . . . . . . . . . 14  |-  ( x  =  U. z  -> 
( `' F "
x )  =  ( `' F " U. z
) )
28 imauni 6166 . . . . . . . . . . . . . 14  |-  ( `' F " U. z
)  =  U_ y  e.  z  ( `' F " y )
2927, 28syl6eq 2486 . . . . . . . . . . . . 13  |-  ( x  =  U. z  -> 
( `' F "
x )  =  U_ y  e.  z  ( `' F " y ) )
3029eleq1d 2498 . . . . . . . . . . . 12  |-  ( x  =  U. z  -> 
( ( `' F " x )  e.  J  <->  U_ y  e.  z  ( `' F " y )  e.  J ) )
3130imbi2d 317 . . . . . . . . . . 11  |-  ( x  =  U. z  -> 
( ( A. y  e.  B  ( `' F " y )  e.  J  ->  ( `' F " x )  e.  J )  <->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  U_ y  e.  z  ( `' F " y )  e.  J ) ) )
3226, 31syl5ibrcom 225 . . . . . . . . . 10  |-  ( (
ph  /\  z  C_  B )  ->  (
x  =  U. z  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  ( `' F "
x )  e.  J
) ) )
3332expimpd 606 . . . . . . . . 9  |-  ( ph  ->  ( ( z  C_  B  /\  x  =  U. z )  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  ( `' F " x )  e.  J ) ) )
3433exlimdv 1771 . . . . . . . 8  |-  ( ph  ->  ( E. z ( z  C_  B  /\  x  =  U. z
)  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  ( `' F " x )  e.  J ) ) )
3519, 34sylbid 218 . . . . . . 7  |-  ( ph  ->  ( x  e.  K  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  ( `' F "
x )  e.  J
) ) )
3635imp 430 . . . . . 6  |-  ( (
ph  /\  x  e.  K )  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  ( `' F " x )  e.  J ) )
3736ralrimdva 2850 . . . . 5  |-  ( ph  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  A. x  e.  K  ( `' F " x )  e.  J ) )
38 imaeq2 5184 . . . . . . 7  |-  ( x  =  y  ->  ( `' F " x )  =  ( `' F " y ) )
3938eleq1d 2498 . . . . . 6  |-  ( x  =  y  ->  (
( `' F "
x )  e.  J  <->  ( `' F " y )  e.  J ) )
4039cbvralv 3062 . . . . 5  |-  ( A. x  e.  K  ( `' F " x )  e.  J  <->  A. y  e.  K  ( `' F " y )  e.  J )
4137, 40syl6ib 229 . . . 4  |-  ( ph  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  A. y  e.  K  ( `' F " y )  e.  J ) )
4215, 41impbid 193 . . 3  |-  ( ph  ->  ( A. y  e.  K  ( `' F " y )  e.  J  <->  A. y  e.  B  ( `' F " y )  e.  J ) )
4342anbi2d 708 . 2  |-  ( ph  ->  ( ( F : X
--> Y  /\  A. y  e.  K  ( `' F " y )  e.  J )  <->  ( F : X --> Y  /\  A. y  e.  B  ( `' F " y )  e.  J ) ) )
444, 43bitrd 256 1  |-  ( ph  ->  ( F  e.  ( J  Cn  K )  <-> 
( F : X --> Y  /\  A. y  e.  B  ( `' F " y )  e.  J
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437   E.wex 1659    e. wcel 1870   A.wral 2782    C_ wss 3442   U.cuni 4222   U_ciun 4302   `'ccnv 4853   "cima 4857   -->wf 5597   ` cfv 5601  (class class class)co 6305   topGenctg 15295   Topctop 19848  TopOnctopon 19849   TopBasesctb 19851    Cn ccn 20171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-sbc 3306  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-fv 5609  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-map 7482  df-topgen 15301  df-top 19852  df-bases 19853  df-topon 19854  df-cn 20174
This theorem is referenced by:  subbascn  20201  txcnmpt  20570  ismtyhmeolem  31840
  Copyright terms: Public domain W3C validator