Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sqabs | Structured version Visualization version GIF version |
Description: The squares of two reals are equal iff their absolute values are equal. (Contributed by NM, 6-Mar-2009.) |
Ref | Expression |
---|---|
sqabs | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴↑2) = (𝐵↑2) ↔ (abs‘𝐴) = (abs‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resqcl 12793 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴↑2) ∈ ℝ) | |
2 | sqge0 12802 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 0 ≤ (𝐴↑2)) | |
3 | absid 13884 | . . . . 5 ⊢ (((𝐴↑2) ∈ ℝ ∧ 0 ≤ (𝐴↑2)) → (abs‘(𝐴↑2)) = (𝐴↑2)) | |
4 | 1, 2, 3 | syl2anc 691 | . . . 4 ⊢ (𝐴 ∈ ℝ → (abs‘(𝐴↑2)) = (𝐴↑2)) |
5 | recn 9905 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
6 | 2nn0 11186 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
7 | absexp 13892 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 2 ∈ ℕ0) → (abs‘(𝐴↑2)) = ((abs‘𝐴)↑2)) | |
8 | 5, 6, 7 | sylancl 693 | . . . 4 ⊢ (𝐴 ∈ ℝ → (abs‘(𝐴↑2)) = ((abs‘𝐴)↑2)) |
9 | 4, 8 | eqtr3d 2646 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴↑2) = ((abs‘𝐴)↑2)) |
10 | resqcl 12793 | . . . . 5 ⊢ (𝐵 ∈ ℝ → (𝐵↑2) ∈ ℝ) | |
11 | sqge0 12802 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 0 ≤ (𝐵↑2)) | |
12 | absid 13884 | . . . . 5 ⊢ (((𝐵↑2) ∈ ℝ ∧ 0 ≤ (𝐵↑2)) → (abs‘(𝐵↑2)) = (𝐵↑2)) | |
13 | 10, 11, 12 | syl2anc 691 | . . . 4 ⊢ (𝐵 ∈ ℝ → (abs‘(𝐵↑2)) = (𝐵↑2)) |
14 | recn 9905 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
15 | absexp 13892 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 2 ∈ ℕ0) → (abs‘(𝐵↑2)) = ((abs‘𝐵)↑2)) | |
16 | 14, 6, 15 | sylancl 693 | . . . 4 ⊢ (𝐵 ∈ ℝ → (abs‘(𝐵↑2)) = ((abs‘𝐵)↑2)) |
17 | 13, 16 | eqtr3d 2646 | . . 3 ⊢ (𝐵 ∈ ℝ → (𝐵↑2) = ((abs‘𝐵)↑2)) |
18 | 9, 17 | eqeqan12d 2626 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴↑2) = (𝐵↑2) ↔ ((abs‘𝐴)↑2) = ((abs‘𝐵)↑2))) |
19 | abscl 13866 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | |
20 | absge0 13875 | . . . . 5 ⊢ (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴)) | |
21 | 19, 20 | jca 553 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) |
22 | abscl 13866 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (abs‘𝐵) ∈ ℝ) | |
23 | absge0 13875 | . . . . 5 ⊢ (𝐵 ∈ ℂ → 0 ≤ (abs‘𝐵)) | |
24 | 22, 23 | jca 553 | . . . 4 ⊢ (𝐵 ∈ ℂ → ((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵))) |
25 | sq11 12798 | . . . 4 ⊢ ((((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) ∧ ((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵))) → (((abs‘𝐴)↑2) = ((abs‘𝐵)↑2) ↔ (abs‘𝐴) = (abs‘𝐵))) | |
26 | 21, 24, 25 | syl2an 493 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((abs‘𝐴)↑2) = ((abs‘𝐵)↑2) ↔ (abs‘𝐴) = (abs‘𝐵))) |
27 | 5, 14, 26 | syl2an 493 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((abs‘𝐴)↑2) = ((abs‘𝐵)↑2) ↔ (abs‘𝐴) = (abs‘𝐵))) |
28 | 18, 27 | bitrd 267 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴↑2) = (𝐵↑2) ↔ (abs‘𝐴) = (abs‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 class class class wbr 4583 ‘cfv 5804 (class class class)co 6549 ℂcc 9813 ℝcr 9814 0cc0 9815 ≤ cle 9954 2c2 10947 ℕ0cn0 11169 ↑cexp 12722 abscabs 13822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-sup 8231 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-n0 11170 df-z 11255 df-uz 11564 df-rp 11709 df-seq 12664 df-exp 12723 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 |
This theorem is referenced by: coskpi 24076 |
Copyright terms: Public domain | W3C validator |