Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimltmpt Structured version   Visualization version   GIF version

Theorem smfpimltmpt 39633
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfpimltmpt.x 𝑥𝜑
smfpimltmpt.s (𝜑𝑆 ∈ SAlg)
smfpimltmpt.b ((𝜑𝑥𝐴) → 𝐵𝑉)
smfpimltmpt.f (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfpimltmpt.r (𝜑𝑅 ∈ ℝ)
Assertion
Ref Expression
smfpimltmpt (𝜑 → {𝑥𝐴𝐵 < 𝑅} ∈ (𝑆t 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑆(𝑥)   𝑉(𝑥)

Proof of Theorem smfpimltmpt
StepHypRef Expression
1 nfmpt1 4675 . . 3 𝑥(𝑥𝐴𝐵)
2 smfpimltmpt.s . . 3 (𝜑𝑆 ∈ SAlg)
3 smfpimltmpt.f . . 3 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
4 eqid 2610 . . 3 dom (𝑥𝐴𝐵) = dom (𝑥𝐴𝐵)
5 smfpimltmpt.r . . 3 (𝜑𝑅 ∈ ℝ)
61, 2, 3, 4, 5smfpreimaltf 39623 . 2 (𝜑 → {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅} ∈ (𝑆t dom (𝑥𝐴𝐵)))
7 smfpimltmpt.x . . . . . 6 𝑥𝜑
8 eqid 2610 . . . . . 6 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
9 smfpimltmpt.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵𝑉)
107, 8, 9dmmptdf 38412 . . . . 5 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
111nfdm 5288 . . . . . 6 𝑥dom (𝑥𝐴𝐵)
12 nfcv 2751 . . . . . 6 𝑥𝐴
1311, 12rabeqf 3165 . . . . 5 (dom (𝑥𝐴𝐵) = 𝐴 → {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅} = {𝑥𝐴 ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅})
1410, 13syl 17 . . . 4 (𝜑 → {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅} = {𝑥𝐴 ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅})
158a1i 11 . . . . . . 7 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
1615, 9fvmpt2d 6202 . . . . . 6 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
1716breq1d 4593 . . . . 5 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) < 𝑅𝐵 < 𝑅))
187, 17rabbida 38302 . . . 4 (𝜑 → {𝑥𝐴 ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅} = {𝑥𝐴𝐵 < 𝑅})
19 eqidd 2611 . . . 4 (𝜑 → {𝑥𝐴𝐵 < 𝑅} = {𝑥𝐴𝐵 < 𝑅})
2014, 18, 193eqtrrd 2649 . . 3 (𝜑 → {𝑥𝐴𝐵 < 𝑅} = {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅})
2110eqcomd 2616 . . . 4 (𝜑𝐴 = dom (𝑥𝐴𝐵))
2221oveq2d 6565 . . 3 (𝜑 → (𝑆t 𝐴) = (𝑆t dom (𝑥𝐴𝐵)))
2320, 22eleq12d 2682 . 2 (𝜑 → ({𝑥𝐴𝐵 < 𝑅} ∈ (𝑆t 𝐴) ↔ {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅} ∈ (𝑆t dom (𝑥𝐴𝐵))))
246, 23mpbird 246 1 (𝜑 → {𝑥𝐴𝐵 < 𝑅} ∈ (𝑆t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wnf 1699  wcel 1977  {crab 2900   class class class wbr 4583  cmpt 4643  dom cdm 5038  cfv 5804  (class class class)co 6549  cr 9814   < clt 9953  t crest 15904  SAlgcsalg 39204  SMblFncsmblfn 39586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-ioo 12050  df-ico 12052  df-smblfn 39587
This theorem is referenced by:  smfaddlem2  39650  smfrec  39674
  Copyright terms: Public domain W3C validator