Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimltxr Structured version   Visualization version   GIF version

Theorem smfpimltxr 39634
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfpimltxr.x 𝑥𝐹
smfpimltxr.s (𝜑𝑆 ∈ SAlg)
smfpimltxr.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfpimltxr.d 𝐷 = dom 𝐹
smfpimltxr.a (𝜑𝐴 ∈ ℝ*)
Assertion
Ref Expression
smfpimltxr (𝜑 → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷
Allowed substitution hints:   𝜑(𝑥)   𝑆(𝑥)   𝐹(𝑥)

Proof of Theorem smfpimltxr
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 breq2 4587 . . . . . 6 (𝐴 = +∞ → ((𝐹𝑥) < 𝐴 ↔ (𝐹𝑥) < +∞))
21rabbidv 3164 . . . . 5 (𝐴 = +∞ → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} = {𝑥𝐷 ∣ (𝐹𝑥) < +∞})
32adantl 481 . . . 4 ((𝜑𝐴 = +∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} = {𝑥𝐷 ∣ (𝐹𝑥) < +∞})
4 smfpimltxr.x . . . . . 6 𝑥𝐹
5 smfpimltxr.f . . . . . . . 8 (𝜑𝐹 ∈ (SMblFn‘𝑆))
6 smfpimltxr.s . . . . . . . . 9 (𝜑𝑆 ∈ SAlg)
7 smfpimltxr.d . . . . . . . . 9 𝐷 = dom 𝐹
84, 6, 7issmff 39620 . . . . . . . 8 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))))
95, 8mpbid 221 . . . . . . 7 (𝜑 → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷)))
109simp2d 1067 . . . . . 6 (𝜑𝐹:𝐷⟶ℝ)
114, 10pimltpnf2 39600 . . . . 5 (𝜑 → {𝑥𝐷 ∣ (𝐹𝑥) < +∞} = 𝐷)
1211adantr 480 . . . 4 ((𝜑𝐴 = +∞) → {𝑥𝐷 ∣ (𝐹𝑥) < +∞} = 𝐷)
13 eqidd 2611 . . . 4 ((𝜑𝐴 = +∞) → 𝐷 = 𝐷)
143, 12, 133eqtrd 2648 . . 3 ((𝜑𝐴 = +∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} = 𝐷)
159simp1d 1066 . . . . . . 7 (𝜑𝐷 𝑆)
166, 15restuni4 38336 . . . . . 6 (𝜑 (𝑆t 𝐷) = 𝐷)
1716eqcomd 2616 . . . . 5 (𝜑𝐷 = (𝑆t 𝐷))
185dmexd 38417 . . . . . . . 8 (𝜑 → dom 𝐹 ∈ V)
197, 18syl5eqel 2692 . . . . . . 7 (𝜑𝐷 ∈ V)
20 eqid 2610 . . . . . . 7 (𝑆t 𝐷) = (𝑆t 𝐷)
216, 19, 20subsalsal 39253 . . . . . 6 (𝜑 → (𝑆t 𝐷) ∈ SAlg)
2221salunid 39247 . . . . 5 (𝜑 (𝑆t 𝐷) ∈ (𝑆t 𝐷))
2317, 22eqeltrd 2688 . . . 4 (𝜑𝐷 ∈ (𝑆t 𝐷))
2423adantr 480 . . 3 ((𝜑𝐴 = +∞) → 𝐷 ∈ (𝑆t 𝐷))
2514, 24eqeltrd 2688 . 2 ((𝜑𝐴 = +∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
26 neqne 2790 . . . 4 𝐴 = +∞ → 𝐴 ≠ +∞)
2726adantl 481 . . 3 ((𝜑 ∧ ¬ 𝐴 = +∞) → 𝐴 ≠ +∞)
28 breq2 4587 . . . . . . . . 9 (𝐴 = -∞ → ((𝐹𝑥) < 𝐴 ↔ (𝐹𝑥) < -∞))
2928rabbidv 3164 . . . . . . . 8 (𝐴 = -∞ → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} = {𝑥𝐷 ∣ (𝐹𝑥) < -∞})
3029adantl 481 . . . . . . 7 ((𝜑𝐴 = -∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} = {𝑥𝐷 ∣ (𝐹𝑥) < -∞})
3110adantr 480 . . . . . . . 8 ((𝜑𝐴 = -∞) → 𝐹:𝐷⟶ℝ)
324, 31pimltmnf2 39588 . . . . . . 7 ((𝜑𝐴 = -∞) → {𝑥𝐷 ∣ (𝐹𝑥) < -∞} = ∅)
3330, 32eqtrd 2644 . . . . . 6 ((𝜑𝐴 = -∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} = ∅)
34210sald 39244 . . . . . . 7 (𝜑 → ∅ ∈ (𝑆t 𝐷))
3534adantr 480 . . . . . 6 ((𝜑𝐴 = -∞) → ∅ ∈ (𝑆t 𝐷))
3633, 35eqeltrd 2688 . . . . 5 ((𝜑𝐴 = -∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
3736adantlr 747 . . . 4 (((𝜑𝐴 ≠ +∞) ∧ 𝐴 = -∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
38 simpll 786 . . . . 5 (((𝜑𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝜑)
39 smfpimltxr.a . . . . . . 7 (𝜑𝐴 ∈ ℝ*)
4038, 39syl 17 . . . . . 6 (((𝜑𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ∈ ℝ*)
41 neqne 2790 . . . . . . 7 𝐴 = -∞ → 𝐴 ≠ -∞)
4241adantl 481 . . . . . 6 (((𝜑𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ≠ -∞)
43 simplr 788 . . . . . 6 (((𝜑𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ≠ +∞)
4440, 42, 43xrred 38522 . . . . 5 (((𝜑𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ∈ ℝ)
456adantr 480 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → 𝑆 ∈ SAlg)
465adantr 480 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆))
47 simpr 476 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
484, 45, 46, 7, 47smfpreimaltf 39623 . . . . 5 ((𝜑𝐴 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
4938, 44, 48syl2anc 691 . . . 4 (((𝜑𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
5037, 49pm2.61dan 828 . . 3 ((𝜑𝐴 ≠ +∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
5127, 50syldan 486 . 2 ((𝜑 ∧ ¬ 𝐴 = +∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
5225, 51pm2.61dan 828 1 (𝜑 → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wnfc 2738  wne 2780  wral 2896  {crab 2900  Vcvv 3173  wss 3540  c0 3874   cuni 4372   class class class wbr 4583  dom cdm 5038  wf 5800  cfv 5804  (class class class)co 6549  cr 9814  +∞cpnf 9950  -∞cmnf 9951  *cxr 9952   < clt 9953  t crest 15904  SAlgcsalg 39204  SMblFncsmblfn 39586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-ac2 9168  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-acn 8651  df-ac 8822  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-ioo 12050  df-ico 12052  df-rest 15906  df-salg 39205  df-smblfn 39587
This theorem is referenced by:  smfpimltxrmpt  39645
  Copyright terms: Public domain W3C validator