Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmmptdf Structured version   Visualization version   GIF version

Theorem dmmptdf 38412
Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
dmmptdf.x 𝑥𝜑
dmmptdf.a 𝐴 = (𝑥𝐵𝐶)
dmmptdf.c ((𝜑𝑥𝐵) → 𝐶𝑉)
Assertion
Ref Expression
dmmptdf (𝜑 → dom 𝐴 = 𝐵)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem dmmptdf
StepHypRef Expression
1 dmmptdf.x . . . 4 𝑥𝜑
2 dmmptdf.c . . . . . 6 ((𝜑𝑥𝐵) → 𝐶𝑉)
3 elex 3185 . . . . . 6 (𝐶𝑉𝐶 ∈ V)
42, 3syl 17 . . . . 5 ((𝜑𝑥𝐵) → 𝐶 ∈ V)
54ex 449 . . . 4 (𝜑 → (𝑥𝐵𝐶 ∈ V))
61, 5ralrimi 2940 . . 3 (𝜑 → ∀𝑥𝐵 𝐶 ∈ V)
7 rabid2 3096 . . 3 (𝐵 = {𝑥𝐵𝐶 ∈ V} ↔ ∀𝑥𝐵 𝐶 ∈ V)
86, 7sylibr 223 . 2 (𝜑𝐵 = {𝑥𝐵𝐶 ∈ V})
9 dmmptdf.a . . 3 𝐴 = (𝑥𝐵𝐶)
109dmmpt 5547 . 2 dom 𝐴 = {𝑥𝐵𝐶 ∈ V}
118, 10syl6reqr 2663 1 (𝜑 → dom 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wnf 1699  wcel 1977  wral 2896  {crab 2900  Vcvv 3173  cmpt 4643  dom cdm 5038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-mpt 4645  df-xp 5044  df-rel 5045  df-cnv 5046  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051
This theorem is referenced by:  smfpimltmpt  39633  smfpimltxrmpt  39645  smfadd  39651  smfpimgtmpt  39667  smfpimgtxrmpt  39670  smfpimioompt  39671  smfrec  39674  smfmul  39680  smfmulc1  39681
  Copyright terms: Public domain W3C validator