Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfmul Structured version   Visualization version   GIF version

Theorem smfmul 39680
 Description: The multiplication of two sigma-measurable functions is measurable. Proposition 121E (d) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfmul.x 𝑥𝜑
smfmul.s (𝜑𝑆 ∈ SAlg)
smfmul.a (𝜑𝐴𝑉)
smfmul.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
smfmul.d ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
smfmul.m (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfmul.n (𝜑 → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
Assertion
Ref Expression
smfmul (𝜑 → (𝑥 ∈ (𝐴𝐶) ↦ (𝐵 · 𝐷)) ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑆(𝑥)   𝑉(𝑥)

Proof of Theorem smfmul
Dummy variables 𝑎 𝑝 𝑞 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfmul.x . 2 𝑥𝜑
2 nfv 1830 . 2 𝑎𝜑
3 smfmul.s . 2 (𝜑𝑆 ∈ SAlg)
4 elinel1 3761 . . . . 5 (𝑥 ∈ (𝐴𝐶) → 𝑥𝐴)
54adantl 481 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥𝐴)
61, 5ssdf 38273 . . 3 (𝜑 → (𝐴𝐶) ⊆ 𝐴)
7 eqid 2610 . . . . . 6 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
8 smfmul.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
91, 7, 8dmmptdf 38412 . . . . 5 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
109eqcomd 2616 . . . 4 (𝜑𝐴 = dom (𝑥𝐴𝐵))
11 smfmul.m . . . . 5 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
12 eqid 2610 . . . . 5 dom (𝑥𝐴𝐵) = dom (𝑥𝐴𝐵)
133, 11, 12smfdmss 39619 . . . 4 (𝜑 → dom (𝑥𝐴𝐵) ⊆ 𝑆)
1410, 13eqsstrd 3602 . . 3 (𝜑𝐴 𝑆)
156, 14sstrd 3578 . 2 (𝜑 → (𝐴𝐶) ⊆ 𝑆)
165, 8syldan 486 . . 3 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐵 ∈ ℝ)
17 elinel2 3762 . . . . 5 (𝑥 ∈ (𝐴𝐶) → 𝑥𝐶)
1817adantl 481 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥𝐶)
19 smfmul.d . . . 4 ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
2018, 19syldan 486 . . 3 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐷 ∈ ℝ)
2116, 20remulcld 9949 . 2 ((𝜑𝑥 ∈ (𝐴𝐶)) → (𝐵 · 𝐷) ∈ ℝ)
22 nfv 1830 . . . 4 𝑥 𝑎 ∈ ℝ
231, 22nfan 1816 . . 3 𝑥(𝜑𝑎 ∈ ℝ)
243adantr 480 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑆 ∈ SAlg)
25 smfmul.a . . . 4 (𝜑𝐴𝑉)
2625adantr 480 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝐴𝑉)
278adantlr 747 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
2819adantlr 747 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ 𝑥𝐶) → 𝐷 ∈ ℝ)
2911adantr 480 . . 3 ((𝜑𝑎 ∈ ℝ) → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
30 smfmul.n . . . 4 (𝜑 → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
3130adantr 480 . . 3 ((𝜑𝑎 ∈ ℝ) → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
32 simpr 476 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
33 fveq1 6102 . . . . . . . 8 (𝑝 = 𝑞 → (𝑝‘2) = (𝑞‘2))
34 fveq1 6102 . . . . . . . 8 (𝑝 = 𝑞 → (𝑝‘3) = (𝑞‘3))
3533, 34oveq12d 6567 . . . . . . 7 (𝑝 = 𝑞 → ((𝑝‘2)(,)(𝑝‘3)) = ((𝑞‘2)(,)(𝑞‘3)))
3635raleqdv 3121 . . . . . 6 (𝑝 = 𝑞 → (∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎 ↔ ∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎))
3736ralbidv 2969 . . . . 5 (𝑝 = 𝑞 → (∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎 ↔ ∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎))
38 fveq1 6102 . . . . . . 7 (𝑝 = 𝑞 → (𝑝‘0) = (𝑞‘0))
39 fveq1 6102 . . . . . . 7 (𝑝 = 𝑞 → (𝑝‘1) = (𝑞‘1))
4038, 39oveq12d 6567 . . . . . 6 (𝑝 = 𝑞 → ((𝑝‘0)(,)(𝑝‘1)) = ((𝑞‘0)(,)(𝑞‘1)))
4140raleqdv 3121 . . . . 5 (𝑝 = 𝑞 → (∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎 ↔ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎))
4237, 41bitrd 267 . . . 4 (𝑝 = 𝑞 → (∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎 ↔ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎))
4342cbvrabv 3172 . . 3 {𝑝 ∈ (ℚ ↑𝑚 (0...3)) ∣ ∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎} = {𝑞 ∈ (ℚ ↑𝑚 (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎}
44 eqid 2610 . . 3 (𝑞 ∈ {𝑝 ∈ (ℚ ↑𝑚 (0...3)) ∣ ∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎} ↦ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))}) = (𝑞 ∈ {𝑝 ∈ (ℚ ↑𝑚 (0...3)) ∣ ∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎} ↦ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
4523, 24, 26, 27, 28, 29, 31, 32, 43, 44smfmullem4 39679 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 · 𝐷) < 𝑎} ∈ (𝑆t (𝐴𝐶)))
461, 2, 3, 15, 21, 45issmfdmpt 39635 1 (𝜑 → (𝑥 ∈ (𝐴𝐶) ↦ (𝐵 · 𝐷)) ∈ (SMblFn‘𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475  Ⅎwnf 1699   ∈ wcel 1977  ∀wral 2896  {crab 2900   ∩ cin 3539  ∪ cuni 4372   class class class wbr 4583   ↦ cmpt 4643  dom cdm 5038  ‘cfv 5804  (class class class)co 6549   ↑𝑚 cmap 7744  ℝcr 9814  0cc0 9815  1c1 9816   · cmul 9820   < clt 9953  2c2 10947  3c3 10948  ℚcq 11664  (,)cioo 12046  ...cfz 12197  SAlgcsalg 39204  SMblFncsmblfn 39586 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-ac2 9168  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-ac 8822  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-s4 13446  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-rest 15906  df-salg 39205  df-smblfn 39587 This theorem is referenced by:  smfmulc1  39681  smfdiv  39682
 Copyright terms: Public domain W3C validator