Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmmpt Structured version   Visualization version   GIF version

Theorem dmmpt 5547
 Description: The domain of the mapping operation in general. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 22-Mar-2015.)
Hypothesis
Ref Expression
dmmpt.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
dmmpt dom 𝐹 = {𝑥𝐴𝐵 ∈ V}

Proof of Theorem dmmpt
StepHypRef Expression
1 dfdm4 5238 . 2 dom 𝐹 = ran 𝐹
2 dfrn4 5513 . 2 ran 𝐹 = (𝐹 “ V)
3 dmmpt.1 . . 3 𝐹 = (𝑥𝐴𝐵)
43mptpreima 5545 . 2 (𝐹 “ V) = {𝑥𝐴𝐵 ∈ V}
51, 2, 43eqtri 2636 1 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475   ∈ wcel 1977  {crab 2900  Vcvv 3173   ↦ cmpt 4643  ◡ccnv 5037  dom cdm 5038  ran crn 5039   “ cima 5041 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-mpt 4645  df-xp 5044  df-rel 5045  df-cnv 5046  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051 This theorem is referenced by:  dmmptss  5548  dmmptg  5549  dmmptd  5937  fvmpti  6190  fvmptss  6201  fvmptss2  6212  tz9.12lem3  8535  cardf2  8652  pmtrsn  17762  00lsp  18802  abrexexd  28731  mptexgf  28809  funcnvmptOLD  28850  funcnvmpt  28851  mptctf  28883  issibf  29722  rdgprc0  30943  imageval  31207  dmmptdf  38412  dvcosre  38799  itgsinexplem1  38845  stirlinglem14  38980  rgrx0ndm  40793
 Copyright terms: Public domain W3C validator