Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigainb Structured version   Visualization version   GIF version

Theorem sigainb 29526
Description: Building a sigma-algebra from intersections with a given set. (Contributed by Thierry Arnoux, 26-Dec-2016.)
Assertion
Ref Expression
sigainb ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → (𝑆 ∩ 𝒫 𝐴) ∈ (sigAlgebra‘𝐴))

Proof of Theorem sigainb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 inex1g 4729 . . 3 (𝑆 ran sigAlgebra → (𝑆 ∩ 𝒫 𝐴) ∈ V)
21adantr 480 . 2 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → (𝑆 ∩ 𝒫 𝐴) ∈ V)
3 inss2 3796 . . 3 (𝑆 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴
43a1i 11 . 2 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → (𝑆 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴)
5 simpr 476 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → 𝐴𝑆)
6 pwidg 4121 . . . . 5 (𝐴𝑆𝐴 ∈ 𝒫 𝐴)
75, 6syl 17 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → 𝐴 ∈ 𝒫 𝐴)
85, 7elind 3760 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → 𝐴 ∈ (𝑆 ∩ 𝒫 𝐴))
9 simpll 786 . . . . . 6 (((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)) → 𝑆 ran sigAlgebra)
10 simplr 788 . . . . . 6 (((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)) → 𝐴𝑆)
11 inss1 3795 . . . . . . 7 (𝑆 ∩ 𝒫 𝐴) ⊆ 𝑆
12 simpr 476 . . . . . . 7 (((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)) → 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴))
1311, 12sseldi 3566 . . . . . 6 (((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)) → 𝑥𝑆)
14 difelsiga 29523 . . . . . 6 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝑥𝑆) → (𝐴𝑥) ∈ 𝑆)
159, 10, 13, 14syl3anc 1318 . . . . 5 (((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)) → (𝐴𝑥) ∈ 𝑆)
16 difss 3699 . . . . . . 7 (𝐴𝑥) ⊆ 𝐴
17 elpwg 4116 . . . . . . 7 ((𝐴𝑥) ∈ 𝑆 → ((𝐴𝑥) ∈ 𝒫 𝐴 ↔ (𝐴𝑥) ⊆ 𝐴))
1816, 17mpbiri 247 . . . . . 6 ((𝐴𝑥) ∈ 𝑆 → (𝐴𝑥) ∈ 𝒫 𝐴)
1915, 18syl 17 . . . . 5 (((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)) → (𝐴𝑥) ∈ 𝒫 𝐴)
2015, 19elind 3760 . . . 4 (((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)) → (𝐴𝑥) ∈ (𝑆 ∩ 𝒫 𝐴))
2120ralrimiva 2949 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → ∀𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)(𝐴𝑥) ∈ (𝑆 ∩ 𝒫 𝐴))
22 simplll 794 . . . . . . 7 ((((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) ∧ 𝑥 ≼ ω) → 𝑆 ran sigAlgebra)
23 simplr 788 . . . . . . . 8 ((((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) ∧ 𝑥 ≼ ω) → 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴))
24 elpwi 4117 . . . . . . . . 9 (𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴) → 𝑥 ⊆ (𝑆 ∩ 𝒫 𝐴))
25 sstr 3576 . . . . . . . . . 10 ((𝑥 ⊆ (𝑆 ∩ 𝒫 𝐴) ∧ (𝑆 ∩ 𝒫 𝐴) ⊆ 𝑆) → 𝑥𝑆)
2611, 25mpan2 703 . . . . . . . . 9 (𝑥 ⊆ (𝑆 ∩ 𝒫 𝐴) → 𝑥𝑆)
2723, 24, 263syl 18 . . . . . . . 8 ((((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) ∧ 𝑥 ≼ ω) → 𝑥𝑆)
28 elpwg 4116 . . . . . . . . 9 (𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴) → (𝑥 ∈ 𝒫 𝑆𝑥𝑆))
2928biimpar 501 . . . . . . . 8 ((𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴) ∧ 𝑥𝑆) → 𝑥 ∈ 𝒫 𝑆)
3023, 27, 29syl2anc 691 . . . . . . 7 ((((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) ∧ 𝑥 ≼ ω) → 𝑥 ∈ 𝒫 𝑆)
31 simpr 476 . . . . . . 7 ((((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) ∧ 𝑥 ≼ ω) → 𝑥 ≼ ω)
32 sigaclcu 29507 . . . . . . 7 ((𝑆 ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑆𝑥 ≼ ω) → 𝑥𝑆)
3322, 30, 31, 32syl3anc 1318 . . . . . 6 ((((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) ∧ 𝑥 ≼ ω) → 𝑥𝑆)
34 sstr 3576 . . . . . . . . 9 ((𝑥 ⊆ (𝑆 ∩ 𝒫 𝐴) ∧ (𝑆 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴) → 𝑥 ⊆ 𝒫 𝐴)
353, 34mpan2 703 . . . . . . . 8 (𝑥 ⊆ (𝑆 ∩ 𝒫 𝐴) → 𝑥 ⊆ 𝒫 𝐴)
3623, 24, 353syl 18 . . . . . . 7 ((((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) ∧ 𝑥 ≼ ω) → 𝑥 ⊆ 𝒫 𝐴)
37 sspwuni 4547 . . . . . . . 8 (𝑥 ⊆ 𝒫 𝐴 𝑥𝐴)
38 vuniex 6852 . . . . . . . . 9 𝑥 ∈ V
3938elpw 4114 . . . . . . . 8 ( 𝑥 ∈ 𝒫 𝐴 𝑥𝐴)
4037, 39bitr4i 266 . . . . . . 7 (𝑥 ⊆ 𝒫 𝐴 𝑥 ∈ 𝒫 𝐴)
4136, 40sylib 207 . . . . . 6 ((((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) ∧ 𝑥 ≼ ω) → 𝑥 ∈ 𝒫 𝐴)
4233, 41elind 3760 . . . . 5 ((((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) ∧ 𝑥 ≼ ω) → 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴))
4342ex 449 . . . 4 (((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) → (𝑥 ≼ ω → 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)))
4443ralrimiva 2949 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → ∀𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)(𝑥 ≼ ω → 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)))
458, 21, 443jca 1235 . 2 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → (𝐴 ∈ (𝑆 ∩ 𝒫 𝐴) ∧ ∀𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)(𝐴𝑥) ∈ (𝑆 ∩ 𝒫 𝐴) ∧ ∀𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)(𝑥 ≼ ω → 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴))))
46 issiga 29501 . . 3 ((𝑆 ∩ 𝒫 𝐴) ∈ V → ((𝑆 ∩ 𝒫 𝐴) ∈ (sigAlgebra‘𝐴) ↔ ((𝑆 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴 ∧ (𝐴 ∈ (𝑆 ∩ 𝒫 𝐴) ∧ ∀𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)(𝐴𝑥) ∈ (𝑆 ∩ 𝒫 𝐴) ∧ ∀𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)(𝑥 ≼ ω → 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴))))))
4746biimpar 501 . 2 (((𝑆 ∩ 𝒫 𝐴) ∈ V ∧ ((𝑆 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴 ∧ (𝐴 ∈ (𝑆 ∩ 𝒫 𝐴) ∧ ∀𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)(𝐴𝑥) ∈ (𝑆 ∩ 𝒫 𝐴) ∧ ∀𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)(𝑥 ≼ ω → 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴))))) → (𝑆 ∩ 𝒫 𝐴) ∈ (sigAlgebra‘𝐴))
482, 4, 45, 47syl12anc 1316 1 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → (𝑆 ∩ 𝒫 𝐴) ∈ (sigAlgebra‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031  wcel 1977  wral 2896  Vcvv 3173  cdif 3537  cin 3539  wss 3540  𝒫 cpw 4108   cuni 4372   class class class wbr 4583  ran crn 5039  cfv 5804  ωcom 6957  cdom 7839  sigAlgebracsiga 29497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-ac2 9168
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-oi 8298  df-card 8648  df-acn 8651  df-ac 8822  df-cda 8873  df-siga 29498
This theorem is referenced by:  measinb2  29613
  Copyright terms: Public domain W3C validator