Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  insiga Structured version   Visualization version   GIF version

Theorem insiga 29527
Description: The intersection of a collection of sigma-algebras of same base is a sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016.)
Assertion
Ref Expression
insiga ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → 𝐴 ∈ (sigAlgebra‘𝑂))

Proof of Theorem insiga
Dummy variables 𝑥 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 intex 4747 . . . 4 (𝐴 ≠ ∅ ↔ 𝐴 ∈ V)
21biimpi 205 . . 3 (𝐴 ≠ ∅ → 𝐴 ∈ V)
32adantr 480 . 2 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → 𝐴 ∈ V)
4 intssuni 4434 . . . 4 (𝐴 ≠ ∅ → 𝐴 𝐴)
54adantr 480 . . 3 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → 𝐴 𝐴)
6 simpr 476 . . . . 5 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂))
7 elpwi 4117 . . . . . 6 (𝐴 ∈ 𝒫 (sigAlgebra‘𝑂) → 𝐴 ⊆ (sigAlgebra‘𝑂))
8 sigasspw 29506 . . . . . . . 8 (𝑠 ∈ (sigAlgebra‘𝑂) → 𝑠 ⊆ 𝒫 𝑂)
9 selpw 4115 . . . . . . . 8 (𝑠 ∈ 𝒫 𝒫 𝑂𝑠 ⊆ 𝒫 𝑂)
108, 9sylibr 223 . . . . . . 7 (𝑠 ∈ (sigAlgebra‘𝑂) → 𝑠 ∈ 𝒫 𝒫 𝑂)
1110ssriv 3572 . . . . . 6 (sigAlgebra‘𝑂) ⊆ 𝒫 𝒫 𝑂
127, 11syl6ss 3580 . . . . 5 (𝐴 ∈ 𝒫 (sigAlgebra‘𝑂) → 𝐴 ⊆ 𝒫 𝒫 𝑂)
136, 12syl 17 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → 𝐴 ⊆ 𝒫 𝒫 𝑂)
14 sspwuni 4547 . . . 4 (𝐴 ⊆ 𝒫 𝒫 𝑂 𝐴 ⊆ 𝒫 𝑂)
1513, 14sylib 207 . . 3 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → 𝐴 ⊆ 𝒫 𝑂)
165, 15sstrd 3578 . 2 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → 𝐴 ⊆ 𝒫 𝑂)
17 simpr 476 . . . . . . . . 9 (((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑠𝐴) → 𝑠𝐴)
18 simplr 788 . . . . . . . . 9 (((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑠𝐴) → 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂))
19 elelpwi 4119 . . . . . . . . 9 ((𝑠𝐴𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → 𝑠 ∈ (sigAlgebra‘𝑂))
2017, 18, 19syl2anc 691 . . . . . . . 8 (((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑠𝐴) → 𝑠 ∈ (sigAlgebra‘𝑂))
21 vex 3176 . . . . . . . . 9 𝑠 ∈ V
22 issiga 29501 . . . . . . . . 9 (𝑠 ∈ V → (𝑠 ∈ (sigAlgebra‘𝑂) ↔ (𝑠 ⊆ 𝒫 𝑂 ∧ (𝑂𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠)))))
2321, 22ax-mp 5 . . . . . . . 8 (𝑠 ∈ (sigAlgebra‘𝑂) ↔ (𝑠 ⊆ 𝒫 𝑂 ∧ (𝑂𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠))))
2420, 23sylib 207 . . . . . . 7 (((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑠𝐴) → (𝑠 ⊆ 𝒫 𝑂 ∧ (𝑂𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠))))
2524simprd 478 . . . . . 6 (((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑠𝐴) → (𝑂𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠)))
2625simp1d 1066 . . . . 5 (((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑠𝐴) → 𝑂𝑠)
2726ralrimiva 2949 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → ∀𝑠𝐴 𝑂𝑠)
28 n0 3890 . . . . . . . . 9 (𝐴 ≠ ∅ ↔ ∃𝑠 𝑠𝐴)
2928biimpi 205 . . . . . . . 8 (𝐴 ≠ ∅ → ∃𝑠 𝑠𝐴)
3029adantr 480 . . . . . . 7 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → ∃𝑠 𝑠𝐴)
3120ex 449 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → (𝑠𝐴𝑠 ∈ (sigAlgebra‘𝑂)))
3231eximdv 1833 . . . . . . 7 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → (∃𝑠 𝑠𝐴 → ∃𝑠 𝑠 ∈ (sigAlgebra‘𝑂)))
3330, 32mpd 15 . . . . . 6 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → ∃𝑠 𝑠 ∈ (sigAlgebra‘𝑂))
34 elfvex 6131 . . . . . . 7 (𝑠 ∈ (sigAlgebra‘𝑂) → 𝑂 ∈ V)
3534exlimiv 1845 . . . . . 6 (∃𝑠 𝑠 ∈ (sigAlgebra‘𝑂) → 𝑂 ∈ V)
3633, 35syl 17 . . . . 5 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → 𝑂 ∈ V)
37 elintg 4418 . . . . 5 (𝑂 ∈ V → (𝑂 𝐴 ↔ ∀𝑠𝐴 𝑂𝑠))
3836, 37syl 17 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → (𝑂 𝐴 ↔ ∀𝑠𝐴 𝑂𝑠))
3927, 38mpbird 246 . . 3 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → 𝑂 𝐴)
40 simpll 786 . . . . . . . 8 ((((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 𝐴) ∧ 𝑠𝐴) → (𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)))
41 simpr 476 . . . . . . . 8 ((((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 𝐴) ∧ 𝑠𝐴) → 𝑠𝐴)
4240, 41jca 553 . . . . . . 7 ((((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 𝐴) ∧ 𝑠𝐴) → ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑠𝐴))
43 elinti 4420 . . . . . . . . 9 (𝑥 𝐴 → (𝑠𝐴𝑥𝑠))
4443imp 444 . . . . . . . 8 ((𝑥 𝐴𝑠𝐴) → 𝑥𝑠)
4544adantll 746 . . . . . . 7 ((((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 𝐴) ∧ 𝑠𝐴) → 𝑥𝑠)
4625simp2d 1067 . . . . . . . 8 (((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑠𝐴) → ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠)
4746r19.21bi 2916 . . . . . . 7 ((((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑠𝐴) ∧ 𝑥𝑠) → (𝑂𝑥) ∈ 𝑠)
4842, 45, 47syl2anc 691 . . . . . 6 ((((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 𝐴) ∧ 𝑠𝐴) → (𝑂𝑥) ∈ 𝑠)
4948ralrimiva 2949 . . . . 5 (((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 𝐴) → ∀𝑠𝐴 (𝑂𝑥) ∈ 𝑠)
50 difexg 4735 . . . . . . . 8 (𝑂 ∈ V → (𝑂𝑥) ∈ V)
5136, 50syl 17 . . . . . . 7 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → (𝑂𝑥) ∈ V)
5251adantr 480 . . . . . 6 (((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 𝐴) → (𝑂𝑥) ∈ V)
53 elintg 4418 . . . . . 6 ((𝑂𝑥) ∈ V → ((𝑂𝑥) ∈ 𝐴 ↔ ∀𝑠𝐴 (𝑂𝑥) ∈ 𝑠))
5452, 53syl 17 . . . . 5 (((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 𝐴) → ((𝑂𝑥) ∈ 𝐴 ↔ ∀𝑠𝐴 (𝑂𝑥) ∈ 𝑠))
5549, 54mpbird 246 . . . 4 (((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 𝐴) → (𝑂𝑥) ∈ 𝐴)
5655ralrimiva 2949 . . 3 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → ∀𝑥 𝐴(𝑂𝑥) ∈ 𝐴)
57 simplll 794 . . . . . . . . . 10 (((((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 ≼ ω) ∧ 𝑠𝐴) → (𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)))
58 simpr 476 . . . . . . . . . 10 (((((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 ≼ ω) ∧ 𝑠𝐴) → 𝑠𝐴)
5957, 58jca 553 . . . . . . . . 9 (((((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 ≼ ω) ∧ 𝑠𝐴) → ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑠𝐴))
60 simpllr 795 . . . . . . . . . 10 (((((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 ≼ ω) ∧ 𝑠𝐴) → 𝑥 ∈ 𝒫 𝐴)
61 elpwi 4117 . . . . . . . . . . . 12 (𝑥 ∈ 𝒫 𝐴𝑥 𝐴)
62 intss1 4427 . . . . . . . . . . . 12 (𝑠𝐴 𝐴𝑠)
6361, 62sylan9ss 3581 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 𝐴𝑠𝐴) → 𝑥𝑠)
64 selpw 4115 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 𝑠𝑥𝑠)
6563, 64sylibr 223 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 𝐴𝑠𝐴) → 𝑥 ∈ 𝒫 𝑠)
6660, 65sylancom 698 . . . . . . . . 9 (((((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 ≼ ω) ∧ 𝑠𝐴) → 𝑥 ∈ 𝒫 𝑠)
6759, 66jca 553 . . . . . . . 8 (((((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 ≼ ω) ∧ 𝑠𝐴) → (((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑠𝐴) ∧ 𝑥 ∈ 𝒫 𝑠))
68 simplr 788 . . . . . . . 8 (((((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 ≼ ω) ∧ 𝑠𝐴) → 𝑥 ≼ ω)
6925simp3d 1068 . . . . . . . . 9 (((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑠𝐴) → ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠))
7069r19.21bi 2916 . . . . . . . 8 ((((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑠𝐴) ∧ 𝑥 ∈ 𝒫 𝑠) → (𝑥 ≼ ω → 𝑥𝑠))
7167, 68, 70sylc 63 . . . . . . 7 (((((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 ≼ ω) ∧ 𝑠𝐴) → 𝑥𝑠)
7271ralrimiva 2949 . . . . . 6 ((((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 ≼ ω) → ∀𝑠𝐴 𝑥𝑠)
73 uniexg 6853 . . . . . . . 8 (𝑥 ∈ 𝒫 𝐴 𝑥 ∈ V)
7473ad2antlr 759 . . . . . . 7 ((((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 ≼ ω) → 𝑥 ∈ V)
75 elintg 4418 . . . . . . 7 ( 𝑥 ∈ V → ( 𝑥 𝐴 ↔ ∀𝑠𝐴 𝑥𝑠))
7674, 75syl 17 . . . . . 6 ((((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 ≼ ω) → ( 𝑥 𝐴 ↔ ∀𝑠𝐴 𝑥𝑠))
7772, 76mpbird 246 . . . . 5 ((((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 ≼ ω) → 𝑥 𝐴)
7877ex 449 . . . 4 (((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) ∧ 𝑥 ∈ 𝒫 𝐴) → (𝑥 ≼ ω → 𝑥 𝐴))
7978ralrimiva 2949 . . 3 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → ∀𝑥 ∈ 𝒫 𝐴(𝑥 ≼ ω → 𝑥 𝐴))
8039, 56, 793jca 1235 . 2 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → (𝑂 𝐴 ∧ ∀𝑥 𝐴(𝑂𝑥) ∈ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ≼ ω → 𝑥 𝐴)))
81 issiga 29501 . . 3 ( 𝐴 ∈ V → ( 𝐴 ∈ (sigAlgebra‘𝑂) ↔ ( 𝐴 ⊆ 𝒫 𝑂 ∧ (𝑂 𝐴 ∧ ∀𝑥 𝐴(𝑂𝑥) ∈ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ≼ ω → 𝑥 𝐴)))))
8281biimpar 501 . 2 (( 𝐴 ∈ V ∧ ( 𝐴 ⊆ 𝒫 𝑂 ∧ (𝑂 𝐴 ∧ ∀𝑥 𝐴(𝑂𝑥) ∈ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ≼ ω → 𝑥 𝐴)))) → 𝐴 ∈ (sigAlgebra‘𝑂))
833, 16, 80, 82syl12anc 1316 1 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 (sigAlgebra‘𝑂)) → 𝐴 ∈ (sigAlgebra‘𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031  wex 1695  wcel 1977  wne 2780  wral 2896  Vcvv 3173  cdif 3537  wss 3540  c0 3874  𝒫 cpw 4108   cuni 4372   cint 4410   class class class wbr 4583  cfv 5804  ωcom 6957  cdom 7839  sigAlgebracsiga 29497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-siga 29498
This theorem is referenced by:  sigagensiga  29531
  Copyright terms: Public domain W3C validator