Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqeq1d Structured version   Visualization version   GIF version

Theorem seqeq1d 12669
 Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
Hypothesis
Ref Expression
seqeqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
seqeq1d (𝜑 → seq𝐴( + , 𝐹) = seq𝐵( + , 𝐹))

Proof of Theorem seqeq1d
StepHypRef Expression
1 seqeqd.1 . 2 (𝜑𝐴 = 𝐵)
2 seqeq1 12666 . 2 (𝐴 = 𝐵 → seq𝐴( + , 𝐹) = seq𝐵( + , 𝐹))
31, 2syl 17 1 (𝜑 → seq𝐴( + , 𝐹) = seq𝐵( + , 𝐹))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475  seqcseq 12663 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-xp 5044  df-cnv 5046  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-iota 5768  df-fv 5812  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-seq 12664 This theorem is referenced by:  seqeq123d  12672  seqf1olem2  12703  bcval5  12967  bcn2  12968  seqshft  13673  iserex  14235  isershft  14242  isercoll2  14247  isumsplit  14411  cvgrat  14454  ntrivcvg  14468  ntrivcvgtail  14471  fprodser  14518  eftlub  14678  gsumval2a  17102  gsumccat  17201  mulgnndir  17392  mulgnndirOLD  17393  geolim3  23898  fmul01lt1lem2  38652  stirlinglem7  38973  stirlinglem12  38978
 Copyright terms: Public domain W3C validator