Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval2a Structured version   Visualization version   GIF version

Theorem gsumval2a 17102
 Description: Value of the group sum operation over a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumval2.b 𝐵 = (Base‘𝐺)
gsumval2.p + = (+g𝐺)
gsumval2.g (𝜑𝐺𝑉)
gsumval2.n (𝜑𝑁 ∈ (ℤ𝑀))
gsumval2.f (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
gsumval2a.o 𝑂 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}
gsumval2a.f (𝜑 → ¬ ran 𝐹𝑂)
Assertion
Ref Expression
gsumval2a (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥,𝑉   𝑥, + ,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑀(𝑥,𝑦)   𝑁(𝑥,𝑦)   𝑂(𝑥,𝑦)   𝑉(𝑦)

Proof of Theorem gsumval2a
Dummy variables 𝑧 𝑓 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval2.b . . . 4 𝐵 = (Base‘𝐺)
2 eqid 2610 . . . 4 (0g𝐺) = (0g𝐺)
3 gsumval2.p . . . 4 + = (+g𝐺)
4 gsumval2a.o . . . 4 𝑂 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}
5 eqidd 2611 . . . 4 (𝜑 → (𝐹 “ (V ∖ 𝑂)) = (𝐹 “ (V ∖ 𝑂)))
6 gsumval2.g . . . 4 (𝜑𝐺𝑉)
7 ovex 6577 . . . . 5 (𝑀...𝑁) ∈ V
87a1i 11 . . . 4 (𝜑 → (𝑀...𝑁) ∈ V)
9 gsumval2.f . . . 4 (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
101, 2, 3, 4, 5, 6, 8, 9gsumval 17094 . . 3 (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹𝑂, (0g𝐺), if((𝑀...𝑁) ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(#‘(𝐹 “ (V ∖ 𝑂))))–1-1-onto→(𝐹 “ (V ∖ 𝑂)) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ 𝑂)))))))))
11 gsumval2a.f . . . . 5 (𝜑 → ¬ ran 𝐹𝑂)
1211iffalsed 4047 . . . 4 (𝜑 → if(ran 𝐹𝑂, (0g𝐺), if((𝑀...𝑁) ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(#‘(𝐹 “ (V ∖ 𝑂))))–1-1-onto→(𝐹 “ (V ∖ 𝑂)) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ 𝑂)))))))) = if((𝑀...𝑁) ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(#‘(𝐹 “ (V ∖ 𝑂))))–1-1-onto→(𝐹 “ (V ∖ 𝑂)) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ 𝑂))))))))
13 gsumval2.n . . . . . . 7 (𝜑𝑁 ∈ (ℤ𝑀))
14 eluzel2 11568 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
1513, 14syl 17 . . . . . 6 (𝜑𝑀 ∈ ℤ)
16 eluzelz 11573 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
1713, 16syl 17 . . . . . 6 (𝜑𝑁 ∈ ℤ)
18 fzf 12201 . . . . . . . 8 ...:(ℤ × ℤ)⟶𝒫 ℤ
19 ffn 5958 . . . . . . . 8 (...:(ℤ × ℤ)⟶𝒫 ℤ → ... Fn (ℤ × ℤ))
2018, 19ax-mp 5 . . . . . . 7 ... Fn (ℤ × ℤ)
21 fnovrn 6707 . . . . . . 7 ((... Fn (ℤ × ℤ) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) ∈ ran ...)
2220, 21mp3an1 1403 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) ∈ ran ...)
2315, 17, 22syl2anc 691 . . . . 5 (𝜑 → (𝑀...𝑁) ∈ ran ...)
2423iftrued 4044 . . . 4 (𝜑 → if((𝑀...𝑁) ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(#‘(𝐹 “ (V ∖ 𝑂))))–1-1-onto→(𝐹 “ (V ∖ 𝑂)) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ 𝑂))))))) = (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))))
2512, 24eqtrd 2644 . . 3 (𝜑 → if(ran 𝐹𝑂, (0g𝐺), if((𝑀...𝑁) ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(#‘(𝐹 “ (V ∖ 𝑂))))–1-1-onto→(𝐹 “ (V ∖ 𝑂)) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ 𝑂)))))))) = (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))))
2610, 25eqtrd 2644 . 2 (𝜑 → (𝐺 Σg 𝐹) = (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))))
27 fvex 6113 . . 3 (seq𝑀( + , 𝐹)‘𝑁) ∈ V
28 fzopth 12249 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝑀) → ((𝑀...𝑁) = (𝑚...𝑛) ↔ (𝑀 = 𝑚𝑁 = 𝑛)))
2913, 28syl 17 . . . . . . . . . 10 (𝜑 → ((𝑀...𝑁) = (𝑚...𝑛) ↔ (𝑀 = 𝑚𝑁 = 𝑛)))
30 simpl 472 . . . . . . . . . . . . . 14 ((𝑀 = 𝑚𝑁 = 𝑛) → 𝑀 = 𝑚)
3130seqeq1d 12669 . . . . . . . . . . . . 13 ((𝑀 = 𝑚𝑁 = 𝑛) → seq𝑀( + , 𝐹) = seq𝑚( + , 𝐹))
32 simpr 476 . . . . . . . . . . . . 13 ((𝑀 = 𝑚𝑁 = 𝑛) → 𝑁 = 𝑛)
3331, 32fveq12d 6109 . . . . . . . . . . . 12 ((𝑀 = 𝑚𝑁 = 𝑛) → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑚( + , 𝐹)‘𝑛))
3433eqcomd 2616 . . . . . . . . . . 11 ((𝑀 = 𝑚𝑁 = 𝑛) → (seq𝑚( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑁))
35 eqeq1 2614 . . . . . . . . . . 11 (𝑧 = (seq𝑚( + , 𝐹)‘𝑛) → (𝑧 = (seq𝑀( + , 𝐹)‘𝑁) ↔ (seq𝑚( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑁)))
3634, 35syl5ibrcom 236 . . . . . . . . . 10 ((𝑀 = 𝑚𝑁 = 𝑛) → (𝑧 = (seq𝑚( + , 𝐹)‘𝑛) → 𝑧 = (seq𝑀( + , 𝐹)‘𝑁)))
3729, 36syl6bi 242 . . . . . . . . 9 (𝜑 → ((𝑀...𝑁) = (𝑚...𝑛) → (𝑧 = (seq𝑚( + , 𝐹)‘𝑛) → 𝑧 = (seq𝑀( + , 𝐹)‘𝑁))))
3837impd 446 . . . . . . . 8 (𝜑 → (((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) → 𝑧 = (seq𝑀( + , 𝐹)‘𝑁)))
3938rexlimdvw 3016 . . . . . . 7 (𝜑 → (∃𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) → 𝑧 = (seq𝑀( + , 𝐹)‘𝑁)))
4039exlimdv 1848 . . . . . 6 (𝜑 → (∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) → 𝑧 = (seq𝑀( + , 𝐹)‘𝑁)))
4115adantr 480 . . . . . . . 8 ((𝜑𝑧 = (seq𝑀( + , 𝐹)‘𝑁)) → 𝑀 ∈ ℤ)
42 oveq2 6557 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → (𝑀...𝑛) = (𝑀...𝑁))
4342eqcomd 2616 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (𝑀...𝑁) = (𝑀...𝑛))
4443biantrurd 528 . . . . . . . . . . 11 (𝑛 = 𝑁 → (𝑧 = (seq𝑀( + , 𝐹)‘𝑛) ↔ ((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑧 = (seq𝑀( + , 𝐹)‘𝑛))))
45 fveq2 6103 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑁))
4645eqeq2d 2620 . . . . . . . . . . 11 (𝑛 = 𝑁 → (𝑧 = (seq𝑀( + , 𝐹)‘𝑛) ↔ 𝑧 = (seq𝑀( + , 𝐹)‘𝑁)))
4744, 46bitr3d 269 . . . . . . . . . 10 (𝑛 = 𝑁 → (((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑧 = (seq𝑀( + , 𝐹)‘𝑛)) ↔ 𝑧 = (seq𝑀( + , 𝐹)‘𝑁)))
4847rspcev 3282 . . . . . . . . 9 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑧 = (seq𝑀( + , 𝐹)‘𝑁)) → ∃𝑛 ∈ (ℤ𝑀)((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑧 = (seq𝑀( + , 𝐹)‘𝑛)))
4913, 48sylan 487 . . . . . . . 8 ((𝜑𝑧 = (seq𝑀( + , 𝐹)‘𝑁)) → ∃𝑛 ∈ (ℤ𝑀)((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑧 = (seq𝑀( + , 𝐹)‘𝑛)))
50 fveq2 6103 . . . . . . . . . 10 (𝑚 = 𝑀 → (ℤ𝑚) = (ℤ𝑀))
51 oveq1 6556 . . . . . . . . . . . 12 (𝑚 = 𝑀 → (𝑚...𝑛) = (𝑀...𝑛))
5251eqeq2d 2620 . . . . . . . . . . 11 (𝑚 = 𝑀 → ((𝑀...𝑁) = (𝑚...𝑛) ↔ (𝑀...𝑁) = (𝑀...𝑛)))
53 seqeq1 12666 . . . . . . . . . . . . 13 (𝑚 = 𝑀 → seq𝑚( + , 𝐹) = seq𝑀( + , 𝐹))
5453fveq1d 6105 . . . . . . . . . . . 12 (𝑚 = 𝑀 → (seq𝑚( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑛))
5554eqeq2d 2620 . . . . . . . . . . 11 (𝑚 = 𝑀 → (𝑧 = (seq𝑚( + , 𝐹)‘𝑛) ↔ 𝑧 = (seq𝑀( + , 𝐹)‘𝑛)))
5652, 55anbi12d 743 . . . . . . . . . 10 (𝑚 = 𝑀 → (((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑧 = (seq𝑀( + , 𝐹)‘𝑛))))
5750, 56rexeqbidv 3130 . . . . . . . . 9 (𝑚 = 𝑀 → (∃𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ𝑀)((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑧 = (seq𝑀( + , 𝐹)‘𝑛))))
5857spcegv 3267 . . . . . . . 8 (𝑀 ∈ ℤ → (∃𝑛 ∈ (ℤ𝑀)((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑧 = (seq𝑀( + , 𝐹)‘𝑛)) → ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))))
5941, 49, 58sylc 63 . . . . . . 7 ((𝜑𝑧 = (seq𝑀( + , 𝐹)‘𝑁)) → ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)))
6059ex 449 . . . . . 6 (𝜑 → (𝑧 = (seq𝑀( + , 𝐹)‘𝑁) → ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))))
6140, 60impbid 201 . . . . 5 (𝜑 → (∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ 𝑧 = (seq𝑀( + , 𝐹)‘𝑁)))
6261adantr 480 . . . 4 ((𝜑 ∧ (seq𝑀( + , 𝐹)‘𝑁) ∈ V) → (∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ 𝑧 = (seq𝑀( + , 𝐹)‘𝑁)))
6362iota5 5788 . . 3 ((𝜑 ∧ (seq𝑀( + , 𝐹)‘𝑁) ∈ V) → (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))) = (seq𝑀( + , 𝐹)‘𝑁))
6427, 63mpan2 703 . 2 (𝜑 → (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))) = (seq𝑀( + , 𝐹)‘𝑁))
6526, 64eqtrd 2644 1 (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475  ∃wex 1695   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897  {crab 2900  Vcvv 3173   ∖ cdif 3537   ⊆ wss 3540  ifcif 4036  𝒫 cpw 4108   × cxp 5036  ◡ccnv 5037  ran crn 5039   “ cima 5041   ∘ ccom 5042  ℩cio 5766   Fn wfn 5799  ⟶wf 5800  –1-1-onto→wf1o 5803  ‘cfv 5804  (class class class)co 6549  1c1 9816  ℤcz 11254  ℤ≥cuz 11563  ...cfz 12197  seqcseq 12663  #chash 12979  Basecbs 15695  +gcplusg 15768  0gc0g 15923   Σg cgsu 15924 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-neg 10148  df-z 11255  df-uz 11564  df-fz 12198  df-seq 12664  df-gsum 15926 This theorem is referenced by:  gsumval2  17103
 Copyright terms: Public domain W3C validator