Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem13 Structured version   Visualization version   GIF version

Theorem ruclem13 14810
 Description: Lemma for ruc 14811. There is no function that maps ℕ onto ℝ. (Use nex 1722 if you want this in the form ¬ ∃𝑓𝑓:ℕ–onto→ℝ.) (Contributed by NM, 14-Oct-2004.) (Proof shortened by Fan Zheng, 6-Jun-2016.)
Assertion
Ref Expression
ruclem13 ¬ 𝐹:ℕ–onto→ℝ

Proof of Theorem ruclem13
Dummy variables 𝑑 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 forn 6031 . . . 4 (𝐹:ℕ–onto→ℝ → ran 𝐹 = ℝ)
21difeq2d 3690 . . 3 (𝐹:ℕ–onto→ℝ → (ℝ ∖ ran 𝐹) = (ℝ ∖ ℝ))
3 difid 3902 . . 3 (ℝ ∖ ℝ) = ∅
42, 3syl6eq 2660 . 2 (𝐹:ℕ–onto→ℝ → (ℝ ∖ ran 𝐹) = ∅)
5 reex 9906 . . . . . 6 ℝ ∈ V
65, 5xpex 6860 . . . . 5 (ℝ × ℝ) ∈ V
76, 5mpt2ex 7136 . . . 4 (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)) ∈ V
87isseti 3182 . . 3 𝑑 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))
9 fof 6028 . . . . . . . 8 (𝐹:ℕ–onto→ℝ → 𝐹:ℕ⟶ℝ)
109adantr 480 . . . . . . 7 ((𝐹:ℕ–onto→ℝ ∧ 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))) → 𝐹:ℕ⟶ℝ)
11 simpr 476 . . . . . . 7 ((𝐹:ℕ–onto→ℝ ∧ 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))) → 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
12 eqid 2610 . . . . . . 7 ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹) = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
13 eqid 2610 . . . . . . 7 seq0(𝑑, ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)) = seq0(𝑑, ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹))
14 eqid 2610 . . . . . . 7 sup(ran (1st ∘ seq0(𝑑, ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹))), ℝ, < ) = sup(ran (1st ∘ seq0(𝑑, ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹))), ℝ, < )
1510, 11, 12, 13, 14ruclem12 14809 . . . . . 6 ((𝐹:ℕ–onto→ℝ ∧ 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))) → sup(ran (1st ∘ seq0(𝑑, ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹))), ℝ, < ) ∈ (ℝ ∖ ran 𝐹))
16 n0i 3879 . . . . . 6 (sup(ran (1st ∘ seq0(𝑑, ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹))), ℝ, < ) ∈ (ℝ ∖ ran 𝐹) → ¬ (ℝ ∖ ran 𝐹) = ∅)
1715, 16syl 17 . . . . 5 ((𝐹:ℕ–onto→ℝ ∧ 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))) → ¬ (ℝ ∖ ran 𝐹) = ∅)
1817ex 449 . . . 4 (𝐹:ℕ–onto→ℝ → (𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)) → ¬ (ℝ ∖ ran 𝐹) = ∅))
1918exlimdv 1848 . . 3 (𝐹:ℕ–onto→ℝ → (∃𝑑 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)) → ¬ (ℝ ∖ ran 𝐹) = ∅))
208, 19mpi 20 . 2 (𝐹:ℕ–onto→ℝ → ¬ (ℝ ∖ ran 𝐹) = ∅)
214, 20pm2.65i 184 1 ¬ 𝐹:ℕ–onto→ℝ
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∧ wa 383   = wceq 1475  ∃wex 1695   ∈ wcel 1977  ⦋csb 3499   ∖ cdif 3537   ∪ cun 3538  ∅c0 3874  ifcif 4036  {csn 4125  ⟨cop 4131   class class class wbr 4583   × cxp 5036  ran crn 5039   ∘ ccom 5042  ⟶wf 5800  –onto→wfo 5802  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  1st c1st 7057  2nd c2nd 7058  supcsup 8229  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953   / cdiv 10563  ℕcn 10897  2c2 10947  seqcseq 12663 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-seq 12664 This theorem is referenced by:  ruc  14811
 Copyright terms: Public domain W3C validator