Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rankung | Structured version Visualization version GIF version |
Description: The rank of the union of two sets. Closed form of rankun 8602. (Contributed by Scott Fenton, 15-Jul-2015.) |
Ref | Expression |
---|---|
rankung | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (rank‘(𝐴 ∪ 𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1 3722 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∪ 𝑦) = (𝐴 ∪ 𝑦)) | |
2 | 1 | fveq2d 6107 | . . 3 ⊢ (𝑥 = 𝐴 → (rank‘(𝑥 ∪ 𝑦)) = (rank‘(𝐴 ∪ 𝑦))) |
3 | fveq2 6103 | . . . 4 ⊢ (𝑥 = 𝐴 → (rank‘𝑥) = (rank‘𝐴)) | |
4 | 3 | uneq1d 3728 | . . 3 ⊢ (𝑥 = 𝐴 → ((rank‘𝑥) ∪ (rank‘𝑦)) = ((rank‘𝐴) ∪ (rank‘𝑦))) |
5 | 2, 4 | eqeq12d 2625 | . 2 ⊢ (𝑥 = 𝐴 → ((rank‘(𝑥 ∪ 𝑦)) = ((rank‘𝑥) ∪ (rank‘𝑦)) ↔ (rank‘(𝐴 ∪ 𝑦)) = ((rank‘𝐴) ∪ (rank‘𝑦)))) |
6 | uneq2 3723 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴 ∪ 𝑦) = (𝐴 ∪ 𝐵)) | |
7 | 6 | fveq2d 6107 | . . 3 ⊢ (𝑦 = 𝐵 → (rank‘(𝐴 ∪ 𝑦)) = (rank‘(𝐴 ∪ 𝐵))) |
8 | fveq2 6103 | . . . 4 ⊢ (𝑦 = 𝐵 → (rank‘𝑦) = (rank‘𝐵)) | |
9 | 8 | uneq2d 3729 | . . 3 ⊢ (𝑦 = 𝐵 → ((rank‘𝐴) ∪ (rank‘𝑦)) = ((rank‘𝐴) ∪ (rank‘𝐵))) |
10 | 7, 9 | eqeq12d 2625 | . 2 ⊢ (𝑦 = 𝐵 → ((rank‘(𝐴 ∪ 𝑦)) = ((rank‘𝐴) ∪ (rank‘𝑦)) ↔ (rank‘(𝐴 ∪ 𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵)))) |
11 | vex 3176 | . . 3 ⊢ 𝑥 ∈ V | |
12 | vex 3176 | . . 3 ⊢ 𝑦 ∈ V | |
13 | 11, 12 | rankun 8602 | . 2 ⊢ (rank‘(𝑥 ∪ 𝑦)) = ((rank‘𝑥) ∪ (rank‘𝑦)) |
14 | 5, 10, 13 | vtocl2g 3243 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (rank‘(𝐴 ∪ 𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∪ cun 3538 ‘cfv 5804 rankcrnk 8509 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-reg 8380 ax-inf2 8421 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-om 6958 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-r1 8510 df-rank 8511 |
This theorem is referenced by: hfun 31455 |
Copyright terms: Public domain | W3C validator |