Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fwddifnp1 Structured version   Visualization version   GIF version

Theorem fwddifnp1 31442
 Description: The value of the n-iterated forward difference at a successor. (Contributed by Scott Fenton, 28-May-2020.)
Hypotheses
Ref Expression
fwddifnp1.1 (𝜑𝑁 ∈ ℕ0)
fwddifnp1.2 (𝜑𝐴 ⊆ ℂ)
fwddifnp1.3 (𝜑𝐹:𝐴⟶ℂ)
fwddifnp1.4 (𝜑𝑋 ∈ ℂ)
fwddifnp1.5 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑋 + 𝑘) ∈ 𝐴)
Assertion
Ref Expression
fwddifnp1 (𝜑 → (((𝑁 + 1) △n 𝐹)‘𝑋) = (((𝑁n 𝐹)‘(𝑋 + 1)) − ((𝑁n 𝐹)‘𝑋)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑋   𝑘,𝑁   𝜑,𝑘

Proof of Theorem fwddifnp1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fwddifnp1.1 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
2 elfzelz 12213 . . . . . . 7 (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℤ)
3 bcpasc 12970 . . . . . . 7 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → ((𝑁C𝑘) + (𝑁C(𝑘 − 1))) = ((𝑁 + 1)C𝑘))
41, 2, 3syl2an 493 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C𝑘) + (𝑁C(𝑘 − 1))) = ((𝑁 + 1)C𝑘))
54oveq1d 6564 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁C𝑘) + (𝑁C(𝑘 − 1))) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (((𝑁 + 1)C𝑘) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
6 bccl 12971 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑁C𝑘) ∈ ℕ0)
71, 2, 6syl2an 493 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C𝑘) ∈ ℕ0)
87nn0cnd 11230 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C𝑘) ∈ ℂ)
9 peano2zm 11297 . . . . . . . . . . . 12 (𝑘 ∈ ℤ → (𝑘 − 1) ∈ ℤ)
102, 9syl 17 . . . . . . . . . . 11 (𝑘 ∈ (0...(𝑁 + 1)) → (𝑘 − 1) ∈ ℤ)
11 bccl 12971 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑘 − 1) ∈ ℤ) → (𝑁C(𝑘 − 1)) ∈ ℕ0)
121, 10, 11syl2an 493 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C(𝑘 − 1)) ∈ ℕ0)
1312nn0cnd 11230 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C(𝑘 − 1)) ∈ ℂ)
148, 13addcomd 10117 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C𝑘) + (𝑁C(𝑘 − 1))) = ((𝑁C(𝑘 − 1)) + (𝑁C𝑘)))
1514oveq1d 6564 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁C𝑘) + (𝑁C(𝑘 − 1))) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (((𝑁C(𝑘 − 1)) + (𝑁C𝑘)) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
16 peano2nn0 11210 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
171, 16syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑁 + 1) ∈ ℕ0)
1817nn0zd 11356 . . . . . . . . . . . 12 (𝜑 → (𝑁 + 1) ∈ ℤ)
19 zsubcl 11296 . . . . . . . . . . . 12 (((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑁 + 1) − 𝑘) ∈ ℤ)
2018, 2, 19syl2an 493 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁 + 1) − 𝑘) ∈ ℤ)
21 m1expcl 12745 . . . . . . . . . . 11 (((𝑁 + 1) − 𝑘) ∈ ℤ → (-1↑((𝑁 + 1) − 𝑘)) ∈ ℤ)
2220, 21syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (-1↑((𝑁 + 1) − 𝑘)) ∈ ℤ)
2322zcnd 11359 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (-1↑((𝑁 + 1) − 𝑘)) ∈ ℂ)
24 fwddifnp1.3 . . . . . . . . . . 11 (𝜑𝐹:𝐴⟶ℂ)
2524adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝐹:𝐴⟶ℂ)
26 fwddifnp1.5 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑋 + 𝑘) ∈ 𝐴)
2725, 26ffvelrnd 6268 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝐹‘(𝑋 + 𝑘)) ∈ ℂ)
2823, 27mulcld 9939 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘))) ∈ ℂ)
2913, 8, 28adddird 9944 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁C(𝑘 − 1)) + (𝑁C𝑘)) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (((𝑁C(𝑘 − 1)) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) + ((𝑁C𝑘) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘))))))
3015, 29eqtrd 2644 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁C𝑘) + (𝑁C(𝑘 − 1))) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (((𝑁C(𝑘 − 1)) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) + ((𝑁C𝑘) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘))))))
311adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑁 ∈ ℕ0)
3231nn0cnd 11230 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑁 ∈ ℂ)
332adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑘 ∈ ℤ)
3433zcnd 11359 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑘 ∈ ℂ)
35 1cnd 9935 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 1 ∈ ℂ)
3632, 34, 35subsub3d 10301 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁 − (𝑘 − 1)) = ((𝑁 + 1) − 𝑘))
3736eqcomd 2616 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁 + 1) − 𝑘) = (𝑁 − (𝑘 − 1)))
3837oveq2d 6565 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (-1↑((𝑁 + 1) − 𝑘)) = (-1↑(𝑁 − (𝑘 − 1))))
3938oveq1d 6564 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘))) = ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘))))
4039oveq2d 6565 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C(𝑘 − 1)) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = ((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))))
4132, 35, 34addsubd 10292 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁 + 1) − 𝑘) = ((𝑁𝑘) + 1))
4241oveq2d 6565 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (-1↑((𝑁 + 1) − 𝑘)) = (-1↑((𝑁𝑘) + 1)))
43 neg1cn 11001 . . . . . . . . . . . . . . 15 -1 ∈ ℂ
4443a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → -1 ∈ ℂ)
45 neg1ne0 11003 . . . . . . . . . . . . . . 15 -1 ≠ 0
4645a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → -1 ≠ 0)
471nn0zd 11356 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℤ)
48 zsubcl 11296 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑁𝑘) ∈ ℤ)
4947, 2, 48syl2an 493 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁𝑘) ∈ ℤ)
5044, 46, 49expp1zd 12879 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (-1↑((𝑁𝑘) + 1)) = ((-1↑(𝑁𝑘)) · -1))
5142, 50eqtrd 2644 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (-1↑((𝑁 + 1) − 𝑘)) = ((-1↑(𝑁𝑘)) · -1))
52 m1expcl 12745 . . . . . . . . . . . . . . 15 ((𝑁𝑘) ∈ ℤ → (-1↑(𝑁𝑘)) ∈ ℤ)
5349, 52syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (-1↑(𝑁𝑘)) ∈ ℤ)
5453zcnd 11359 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (-1↑(𝑁𝑘)) ∈ ℂ)
5554, 44mulcomd 9940 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((-1↑(𝑁𝑘)) · -1) = (-1 · (-1↑(𝑁𝑘))))
5654mulm1d 10361 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (-1 · (-1↑(𝑁𝑘))) = -(-1↑(𝑁𝑘)))
5751, 55, 563eqtrd 2648 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (-1↑((𝑁 + 1) − 𝑘)) = -(-1↑(𝑁𝑘)))
5857oveq1d 6564 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘))) = (-(-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))))
5954, 27mulneg1d 10362 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (-(-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))) = -((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))))
6058, 59eqtrd 2644 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘))) = -((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))))
6160oveq2d 6565 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C𝑘) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = ((𝑁C𝑘) · -((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
6254, 27mulcld 9939 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))) ∈ ℂ)
638, 62mulneg2d 10363 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C𝑘) · -((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = -((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
6461, 63eqtrd 2644 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C𝑘) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = -((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
6540, 64oveq12d 6567 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁C(𝑘 − 1)) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) + ((𝑁C𝑘) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘))))) = (((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))) + -((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))))))
66 zsubcl 11296 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ (𝑘 − 1) ∈ ℤ) → (𝑁 − (𝑘 − 1)) ∈ ℤ)
6747, 10, 66syl2an 493 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁 − (𝑘 − 1)) ∈ ℤ)
68 m1expcl 12745 . . . . . . . . . . 11 ((𝑁 − (𝑘 − 1)) ∈ ℤ → (-1↑(𝑁 − (𝑘 − 1))) ∈ ℤ)
6967, 68syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (-1↑(𝑁 − (𝑘 − 1))) ∈ ℤ)
7069zcnd 11359 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (-1↑(𝑁 − (𝑘 − 1))) ∈ ℂ)
7170, 27mulcld 9939 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘))) ∈ ℂ)
7213, 71mulcld 9939 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))) ∈ ℂ)
738, 62mulcld 9939 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))) ∈ ℂ)
7472, 73negsubd 10277 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))) + -((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))))) = (((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))) − ((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))))))
7530, 65, 743eqtrd 2648 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁C𝑘) + (𝑁C(𝑘 − 1))) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))) − ((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))))))
765, 75eqtr3d 2646 . . . 4 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁 + 1)C𝑘) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))) − ((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))))))
7776sumeq2dv 14281 . . 3 (𝜑 → Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁 + 1)C𝑘) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))) − ((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))))))
78 fzfid 12634 . . . 4 (𝜑 → (0...(𝑁 + 1)) ∈ Fin)
7978, 72, 73fsumsub 14362 . . 3 (𝜑 → Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))) − ((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))))) = (Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))) − Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))))))
80 nn0uz 11598 . . . . . . . 8 0 = (ℤ‘0)
8117, 80syl6eleq 2698 . . . . . . 7 (𝜑 → (𝑁 + 1) ∈ (ℤ‘0))
82 oveq1 6556 . . . . . . . . 9 (𝑘 = 0 → (𝑘 − 1) = (0 − 1))
8382oveq2d 6565 . . . . . . . 8 (𝑘 = 0 → (𝑁C(𝑘 − 1)) = (𝑁C(0 − 1)))
8482oveq2d 6565 . . . . . . . . . 10 (𝑘 = 0 → (𝑁 − (𝑘 − 1)) = (𝑁 − (0 − 1)))
8584oveq2d 6565 . . . . . . . . 9 (𝑘 = 0 → (-1↑(𝑁 − (𝑘 − 1))) = (-1↑(𝑁 − (0 − 1))))
86 oveq2 6557 . . . . . . . . . 10 (𝑘 = 0 → (𝑋 + 𝑘) = (𝑋 + 0))
8786fveq2d 6107 . . . . . . . . 9 (𝑘 = 0 → (𝐹‘(𝑋 + 𝑘)) = (𝐹‘(𝑋 + 0)))
8885, 87oveq12d 6567 . . . . . . . 8 (𝑘 = 0 → ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘))) = ((-1↑(𝑁 − (0 − 1))) · (𝐹‘(𝑋 + 0))))
8983, 88oveq12d 6567 . . . . . . 7 (𝑘 = 0 → ((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))) = ((𝑁C(0 − 1)) · ((-1↑(𝑁 − (0 − 1))) · (𝐹‘(𝑋 + 0)))))
9081, 72, 89fsum1p 14326 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))) = (((𝑁C(0 − 1)) · ((-1↑(𝑁 − (0 − 1))) · (𝐹‘(𝑋 + 0)))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘))))))
91 df-neg 10148 . . . . . . . . . . 11 -1 = (0 − 1)
9291oveq2i 6560 . . . . . . . . . 10 (𝑁C-1) = (𝑁C(0 − 1))
93 bcneg1 30875 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑁C-1) = 0)
941, 93syl 17 . . . . . . . . . 10 (𝜑 → (𝑁C-1) = 0)
9592, 94syl5eqr 2658 . . . . . . . . 9 (𝜑 → (𝑁C(0 − 1)) = 0)
9695oveq1d 6564 . . . . . . . 8 (𝜑 → ((𝑁C(0 − 1)) · ((-1↑(𝑁 − (0 − 1))) · (𝐹‘(𝑋 + 0)))) = (0 · ((-1↑(𝑁 − (0 − 1))) · (𝐹‘(𝑋 + 0)))))
97 0z 11265 . . . . . . . . . . . . . . 15 0 ∈ ℤ
98 1z 11284 . . . . . . . . . . . . . . 15 1 ∈ ℤ
99 zsubcl 11296 . . . . . . . . . . . . . . 15 ((0 ∈ ℤ ∧ 1 ∈ ℤ) → (0 − 1) ∈ ℤ)
10097, 98, 99mp2an 704 . . . . . . . . . . . . . 14 (0 − 1) ∈ ℤ
101100a1i 11 . . . . . . . . . . . . 13 (𝜑 → (0 − 1) ∈ ℤ)
10247, 101zsubcld 11363 . . . . . . . . . . . 12 (𝜑 → (𝑁 − (0 − 1)) ∈ ℤ)
103 m1expcl 12745 . . . . . . . . . . . 12 ((𝑁 − (0 − 1)) ∈ ℤ → (-1↑(𝑁 − (0 − 1))) ∈ ℤ)
104102, 103syl 17 . . . . . . . . . . 11 (𝜑 → (-1↑(𝑁 − (0 − 1))) ∈ ℤ)
105104zcnd 11359 . . . . . . . . . 10 (𝜑 → (-1↑(𝑁 − (0 − 1))) ∈ ℂ)
106 eluzfz1 12219 . . . . . . . . . . . . 13 ((𝑁 + 1) ∈ (ℤ‘0) → 0 ∈ (0...(𝑁 + 1)))
10781, 106syl 17 . . . . . . . . . . . 12 (𝜑 → 0 ∈ (0...(𝑁 + 1)))
10826ralrimiva 2949 . . . . . . . . . . . 12 (𝜑 → ∀𝑘 ∈ (0...(𝑁 + 1))(𝑋 + 𝑘) ∈ 𝐴)
10986eleq1d 2672 . . . . . . . . . . . . 13 (𝑘 = 0 → ((𝑋 + 𝑘) ∈ 𝐴 ↔ (𝑋 + 0) ∈ 𝐴))
110109rspcva 3280 . . . . . . . . . . . 12 ((0 ∈ (0...(𝑁 + 1)) ∧ ∀𝑘 ∈ (0...(𝑁 + 1))(𝑋 + 𝑘) ∈ 𝐴) → (𝑋 + 0) ∈ 𝐴)
111107, 108, 110syl2anc 691 . . . . . . . . . . 11 (𝜑 → (𝑋 + 0) ∈ 𝐴)
11224, 111ffvelrnd 6268 . . . . . . . . . 10 (𝜑 → (𝐹‘(𝑋 + 0)) ∈ ℂ)
113105, 112mulcld 9939 . . . . . . . . 9 (𝜑 → ((-1↑(𝑁 − (0 − 1))) · (𝐹‘(𝑋 + 0))) ∈ ℂ)
114113mul02d 10113 . . . . . . . 8 (𝜑 → (0 · ((-1↑(𝑁 − (0 − 1))) · (𝐹‘(𝑋 + 0)))) = 0)
11596, 114eqtrd 2644 . . . . . . 7 (𝜑 → ((𝑁C(0 − 1)) · ((-1↑(𝑁 − (0 − 1))) · (𝐹‘(𝑋 + 0)))) = 0)
116115oveq1d 6564 . . . . . 6 (𝜑 → (((𝑁C(0 − 1)) · ((-1↑(𝑁 − (0 − 1))) · (𝐹‘(𝑋 + 0)))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘))))) = (0 + Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘))))))
117 fzfid 12634 . . . . . . . 8 (𝜑 → ((0 + 1)...(𝑁 + 1)) ∈ Fin)
118 olc 398 . . . . . . . . . 10 (𝑘 ∈ ((0 + 1)...(𝑁 + 1)) → (𝑘 = 0 ∨ 𝑘 ∈ ((0 + 1)...(𝑁 + 1))))
119 elfzp12 12288 . . . . . . . . . . . 12 ((𝑁 + 1) ∈ (ℤ‘0) → (𝑘 ∈ (0...(𝑁 + 1)) ↔ (𝑘 = 0 ∨ 𝑘 ∈ ((0 + 1)...(𝑁 + 1)))))
12081, 119syl 17 . . . . . . . . . . 11 (𝜑 → (𝑘 ∈ (0...(𝑁 + 1)) ↔ (𝑘 = 0 ∨ 𝑘 ∈ ((0 + 1)...(𝑁 + 1)))))
121120biimpar 501 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 = 0 ∨ 𝑘 ∈ ((0 + 1)...(𝑁 + 1)))) → 𝑘 ∈ (0...(𝑁 + 1)))
122118, 121sylan2 490 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → 𝑘 ∈ (0...(𝑁 + 1)))
123122, 72syldan 486 . . . . . . . 8 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))) ∈ ℂ)
124117, 123fsumcl 14311 . . . . . . 7 (𝜑 → Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))) ∈ ℂ)
125124addid2d 10116 . . . . . 6 (𝜑 → (0 + Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘))))) = Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))))
12690, 116, 1253eqtrd 2648 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))) = Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))))
127 fwddifnp1.4 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℂ)
128127adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → 𝑋 ∈ ℂ)
129 1cnd 9935 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → 1 ∈ ℂ)
130 elfzelz 12213 . . . . . . . . . . . 12 (𝑘 ∈ ((0 + 1)...(𝑁 + 1)) → 𝑘 ∈ ℤ)
131130zcnd 11359 . . . . . . . . . . 11 (𝑘 ∈ ((0 + 1)...(𝑁 + 1)) → 𝑘 ∈ ℂ)
132131adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → 𝑘 ∈ ℂ)
133128, 129, 132ppncand 10311 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑋 + 1) + (𝑘 − 1)) = (𝑋 + 𝑘))
134133fveq2d 6107 . . . . . . . 8 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → (𝐹‘((𝑋 + 1) + (𝑘 − 1))) = (𝐹‘(𝑋 + 𝑘)))
135134oveq2d 6565 . . . . . . 7 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘((𝑋 + 1) + (𝑘 − 1)))) = ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘))))
136135oveq2d 6565 . . . . . 6 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘((𝑋 + 1) + (𝑘 − 1))))) = ((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))))
137136sumeq2dv 14281 . . . . 5 (𝜑 → Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘((𝑋 + 1) + (𝑘 − 1))))) = Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))))
138 oveq2 6557 . . . . . . . 8 (𝑗 = 𝑘 → (𝑁C𝑗) = (𝑁C𝑘))
139 oveq2 6557 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝑁𝑗) = (𝑁𝑘))
140139oveq2d 6565 . . . . . . . . 9 (𝑗 = 𝑘 → (-1↑(𝑁𝑗)) = (-1↑(𝑁𝑘)))
141 oveq2 6557 . . . . . . . . . 10 (𝑗 = 𝑘 → ((𝑋 + 1) + 𝑗) = ((𝑋 + 1) + 𝑘))
142141fveq2d 6107 . . . . . . . . 9 (𝑗 = 𝑘 → (𝐹‘((𝑋 + 1) + 𝑗)) = (𝐹‘((𝑋 + 1) + 𝑘)))
143140, 142oveq12d 6567 . . . . . . . 8 (𝑗 = 𝑘 → ((-1↑(𝑁𝑗)) · (𝐹‘((𝑋 + 1) + 𝑗))) = ((-1↑(𝑁𝑘)) · (𝐹‘((𝑋 + 1) + 𝑘))))
144138, 143oveq12d 6567 . . . . . . 7 (𝑗 = 𝑘 → ((𝑁C𝑗) · ((-1↑(𝑁𝑗)) · (𝐹‘((𝑋 + 1) + 𝑗)))) = ((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘((𝑋 + 1) + 𝑘)))))
145144cbvsumv 14274 . . . . . 6 Σ𝑗 ∈ (0...𝑁)((𝑁C𝑗) · ((-1↑(𝑁𝑗)) · (𝐹‘((𝑋 + 1) + 𝑗)))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘((𝑋 + 1) + 𝑘))))
146 1zzd 11285 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
147 0zd 11266 . . . . . . 7 (𝜑 → 0 ∈ ℤ)
148 elfzelz 12213 . . . . . . . . 9 (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℤ)
149 bccl 12971 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑗 ∈ ℤ) → (𝑁C𝑗) ∈ ℕ0)
150149nn0cnd 11230 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑗 ∈ ℤ) → (𝑁C𝑗) ∈ ℂ)
1511, 148, 150syl2an 493 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑁C𝑗) ∈ ℂ)
152 zsubcl 11296 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑁𝑗) ∈ ℤ)
15347, 148, 152syl2an 493 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑁𝑗) ∈ ℤ)
154 m1expcl 12745 . . . . . . . . . . 11 ((𝑁𝑗) ∈ ℤ → (-1↑(𝑁𝑗)) ∈ ℤ)
155153, 154syl 17 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑁)) → (-1↑(𝑁𝑗)) ∈ ℤ)
156155zcnd 11359 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑁)) → (-1↑(𝑁𝑗)) ∈ ℂ)
15724adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑁)) → 𝐹:𝐴⟶ℂ)
158127adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0...𝑁)) → 𝑋 ∈ ℂ)
159 1cnd 9935 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0...𝑁)) → 1 ∈ ℂ)
160148zcnd 11359 . . . . . . . . . . . . . 14 (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℂ)
161160adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0...𝑁)) → 𝑗 ∈ ℂ)
162158, 159, 161addassd 9941 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0...𝑁)) → ((𝑋 + 1) + 𝑗) = (𝑋 + (1 + 𝑗)))
163159, 161addcomd 10117 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0...𝑁)) → (1 + 𝑗) = (𝑗 + 1))
164163oveq2d 6565 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑋 + (1 + 𝑗)) = (𝑋 + (𝑗 + 1)))
165162, 164eqtrd 2644 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑁)) → ((𝑋 + 1) + 𝑗) = (𝑋 + (𝑗 + 1)))
166 fzp1elp1 12264 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑁) → (𝑗 + 1) ∈ (0...(𝑁 + 1)))
167 oveq2 6557 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑗 + 1) → (𝑋 + 𝑘) = (𝑋 + (𝑗 + 1)))
168167eleq1d 2672 . . . . . . . . . . . . . . 15 (𝑘 = (𝑗 + 1) → ((𝑋 + 𝑘) ∈ 𝐴 ↔ (𝑋 + (𝑗 + 1)) ∈ 𝐴))
169168rspccv 3279 . . . . . . . . . . . . . 14 (∀𝑘 ∈ (0...(𝑁 + 1))(𝑋 + 𝑘) ∈ 𝐴 → ((𝑗 + 1) ∈ (0...(𝑁 + 1)) → (𝑋 + (𝑗 + 1)) ∈ 𝐴))
170108, 169syl 17 . . . . . . . . . . . . 13 (𝜑 → ((𝑗 + 1) ∈ (0...(𝑁 + 1)) → (𝑋 + (𝑗 + 1)) ∈ 𝐴))
171170imp 444 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 + 1) ∈ (0...(𝑁 + 1))) → (𝑋 + (𝑗 + 1)) ∈ 𝐴)
172166, 171sylan2 490 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑋 + (𝑗 + 1)) ∈ 𝐴)
173165, 172eqeltrd 2688 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑁)) → ((𝑋 + 1) + 𝑗) ∈ 𝐴)
174157, 173ffvelrnd 6268 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑁)) → (𝐹‘((𝑋 + 1) + 𝑗)) ∈ ℂ)
175156, 174mulcld 9939 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑁)) → ((-1↑(𝑁𝑗)) · (𝐹‘((𝑋 + 1) + 𝑗))) ∈ ℂ)
176151, 175mulcld 9939 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑁)) → ((𝑁C𝑗) · ((-1↑(𝑁𝑗)) · (𝐹‘((𝑋 + 1) + 𝑗)))) ∈ ℂ)
177 oveq2 6557 . . . . . . . 8 (𝑗 = (𝑘 − 1) → (𝑁C𝑗) = (𝑁C(𝑘 − 1)))
178 oveq2 6557 . . . . . . . . . 10 (𝑗 = (𝑘 − 1) → (𝑁𝑗) = (𝑁 − (𝑘 − 1)))
179178oveq2d 6565 . . . . . . . . 9 (𝑗 = (𝑘 − 1) → (-1↑(𝑁𝑗)) = (-1↑(𝑁 − (𝑘 − 1))))
180 oveq2 6557 . . . . . . . . . 10 (𝑗 = (𝑘 − 1) → ((𝑋 + 1) + 𝑗) = ((𝑋 + 1) + (𝑘 − 1)))
181180fveq2d 6107 . . . . . . . . 9 (𝑗 = (𝑘 − 1) → (𝐹‘((𝑋 + 1) + 𝑗)) = (𝐹‘((𝑋 + 1) + (𝑘 − 1))))
182179, 181oveq12d 6567 . . . . . . . 8 (𝑗 = (𝑘 − 1) → ((-1↑(𝑁𝑗)) · (𝐹‘((𝑋 + 1) + 𝑗))) = ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘((𝑋 + 1) + (𝑘 − 1)))))
183177, 182oveq12d 6567 . . . . . . 7 (𝑗 = (𝑘 − 1) → ((𝑁C𝑗) · ((-1↑(𝑁𝑗)) · (𝐹‘((𝑋 + 1) + 𝑗)))) = ((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘((𝑋 + 1) + (𝑘 − 1))))))
184146, 147, 47, 176, 183fsumshft 14354 . . . . . 6 (𝜑 → Σ𝑗 ∈ (0...𝑁)((𝑁C𝑗) · ((-1↑(𝑁𝑗)) · (𝐹‘((𝑋 + 1) + 𝑗)))) = Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘((𝑋 + 1) + (𝑘 − 1))))))
185145, 184syl5reqr 2659 . . . . 5 (𝜑 → Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘((𝑋 + 1) + (𝑘 − 1))))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘((𝑋 + 1) + 𝑘)))))
186126, 137, 1853eqtr2d 2650 . . . 4 (𝜑 → Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘((𝑋 + 1) + 𝑘)))))
1871, 80syl6eleq 2698 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘0))
188 oveq2 6557 . . . . . . 7 (𝑘 = (𝑁 + 1) → (𝑁C𝑘) = (𝑁C(𝑁 + 1)))
189 oveq2 6557 . . . . . . . . 9 (𝑘 = (𝑁 + 1) → (𝑁𝑘) = (𝑁 − (𝑁 + 1)))
190189oveq2d 6565 . . . . . . . 8 (𝑘 = (𝑁 + 1) → (-1↑(𝑁𝑘)) = (-1↑(𝑁 − (𝑁 + 1))))
191 oveq2 6557 . . . . . . . . 9 (𝑘 = (𝑁 + 1) → (𝑋 + 𝑘) = (𝑋 + (𝑁 + 1)))
192191fveq2d 6107 . . . . . . . 8 (𝑘 = (𝑁 + 1) → (𝐹‘(𝑋 + 𝑘)) = (𝐹‘(𝑋 + (𝑁 + 1))))
193190, 192oveq12d 6567 . . . . . . 7 (𝑘 = (𝑁 + 1) → ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))) = ((-1↑(𝑁 − (𝑁 + 1))) · (𝐹‘(𝑋 + (𝑁 + 1)))))
194188, 193oveq12d 6567 . . . . . 6 (𝑘 = (𝑁 + 1) → ((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = ((𝑁C(𝑁 + 1)) · ((-1↑(𝑁 − (𝑁 + 1))) · (𝐹‘(𝑋 + (𝑁 + 1))))))
195187, 73, 194fsump1 14329 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))) + ((𝑁C(𝑁 + 1)) · ((-1↑(𝑁 − (𝑁 + 1))) · (𝐹‘(𝑋 + (𝑁 + 1)))))))
196 bcval 12953 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℤ) → (𝑁C(𝑁 + 1)) = if((𝑁 + 1) ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − (𝑁 + 1))) · (!‘(𝑁 + 1)))), 0))
1971, 18, 196syl2anc 691 . . . . . . . . 9 (𝜑 → (𝑁C(𝑁 + 1)) = if((𝑁 + 1) ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − (𝑁 + 1))) · (!‘(𝑁 + 1)))), 0))
198 fzp1nel 12293 . . . . . . . . . 10 ¬ (𝑁 + 1) ∈ (0...𝑁)
199198iffalsei 4046 . . . . . . . . 9 if((𝑁 + 1) ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − (𝑁 + 1))) · (!‘(𝑁 + 1)))), 0) = 0
200197, 199syl6eq 2660 . . . . . . . 8 (𝜑 → (𝑁C(𝑁 + 1)) = 0)
201200oveq1d 6564 . . . . . . 7 (𝜑 → ((𝑁C(𝑁 + 1)) · ((-1↑(𝑁 − (𝑁 + 1))) · (𝐹‘(𝑋 + (𝑁 + 1))))) = (0 · ((-1↑(𝑁 − (𝑁 + 1))) · (𝐹‘(𝑋 + (𝑁 + 1))))))
20247, 18zsubcld 11363 . . . . . . . . . 10 (𝜑 → (𝑁 − (𝑁 + 1)) ∈ ℤ)
203 m1expcl 12745 . . . . . . . . . . 11 ((𝑁 − (𝑁 + 1)) ∈ ℤ → (-1↑(𝑁 − (𝑁 + 1))) ∈ ℤ)
204203zcnd 11359 . . . . . . . . . 10 ((𝑁 − (𝑁 + 1)) ∈ ℤ → (-1↑(𝑁 − (𝑁 + 1))) ∈ ℂ)
205202, 204syl 17 . . . . . . . . 9 (𝜑 → (-1↑(𝑁 − (𝑁 + 1))) ∈ ℂ)
206 eluzfz2 12220 . . . . . . . . . . . 12 ((𝑁 + 1) ∈ (ℤ‘0) → (𝑁 + 1) ∈ (0...(𝑁 + 1)))
20781, 206syl 17 . . . . . . . . . . 11 (𝜑 → (𝑁 + 1) ∈ (0...(𝑁 + 1)))
208191eleq1d 2672 . . . . . . . . . . . 12 (𝑘 = (𝑁 + 1) → ((𝑋 + 𝑘) ∈ 𝐴 ↔ (𝑋 + (𝑁 + 1)) ∈ 𝐴))
209208rspcv 3278 . . . . . . . . . . 11 ((𝑁 + 1) ∈ (0...(𝑁 + 1)) → (∀𝑘 ∈ (0...(𝑁 + 1))(𝑋 + 𝑘) ∈ 𝐴 → (𝑋 + (𝑁 + 1)) ∈ 𝐴))
210207, 108, 209sylc 63 . . . . . . . . . 10 (𝜑 → (𝑋 + (𝑁 + 1)) ∈ 𝐴)
21124, 210ffvelrnd 6268 . . . . . . . . 9 (𝜑 → (𝐹‘(𝑋 + (𝑁 + 1))) ∈ ℂ)
212205, 211mulcld 9939 . . . . . . . 8 (𝜑 → ((-1↑(𝑁 − (𝑁 + 1))) · (𝐹‘(𝑋 + (𝑁 + 1)))) ∈ ℂ)
213212mul02d 10113 . . . . . . 7 (𝜑 → (0 · ((-1↑(𝑁 − (𝑁 + 1))) · (𝐹‘(𝑋 + (𝑁 + 1))))) = 0)
214201, 213eqtrd 2644 . . . . . 6 (𝜑 → ((𝑁C(𝑁 + 1)) · ((-1↑(𝑁 − (𝑁 + 1))) · (𝐹‘(𝑋 + (𝑁 + 1))))) = 0)
215214oveq2d 6565 . . . . 5 (𝜑 → (Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))) + ((𝑁C(𝑁 + 1)) · ((-1↑(𝑁 − (𝑁 + 1))) · (𝐹‘(𝑋 + (𝑁 + 1)))))) = (Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))) + 0))
216 fzfid 12634 . . . . . . 7 (𝜑 → (0...𝑁) ∈ Fin)
217 fzelp1 12263 . . . . . . . 8 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ (0...(𝑁 + 1)))
218217, 73sylan2 490 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))) ∈ ℂ)
219216, 218fsumcl 14311 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))) ∈ ℂ)
220219addid1d 10115 . . . . 5 (𝜑 → (Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))) + 0) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
221195, 215, 2203eqtrd 2648 . . . 4 (𝜑 → Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
222186, 221oveq12d 6567 . . 3 (𝜑 → (Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))) − Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))))) = (Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘((𝑋 + 1) + 𝑘)))) − Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))))))
22377, 79, 2223eqtrd 2648 . 2 (𝜑 → Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁 + 1)C𝑘) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘((𝑋 + 1) + 𝑘)))) − Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))))))
224 fwddifnp1.2 . . 3 (𝜑𝐴 ⊆ ℂ)
22517, 224, 24, 127, 26fwddifnval 31440 . 2 (𝜑 → (((𝑁 + 1) △n 𝐹)‘𝑋) = Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁 + 1)C𝑘) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
226 peano2cn 10087 . . . . 5 (𝑋 ∈ ℂ → (𝑋 + 1) ∈ ℂ)
227127, 226syl 17 . . . 4 (𝜑 → (𝑋 + 1) ∈ ℂ)
228127adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑋 ∈ ℂ)
229 1cnd 9935 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → 1 ∈ ℂ)
230 elfzelz 12213 . . . . . . . . 9 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ)
231230zcnd 11359 . . . . . . . 8 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℂ)
232231adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℂ)
233228, 229, 232addassd 9941 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑋 + 1) + 𝑘) = (𝑋 + (1 + 𝑘)))
234229, 232addcomd 10117 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → (1 + 𝑘) = (𝑘 + 1))
235234oveq2d 6565 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑋 + (1 + 𝑘)) = (𝑋 + (𝑘 + 1)))
236233, 235eqtrd 2644 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑋 + 1) + 𝑘) = (𝑋 + (𝑘 + 1)))
237 fzp1elp1 12264 . . . . . 6 (𝑘 ∈ (0...𝑁) → (𝑘 + 1) ∈ (0...(𝑁 + 1)))
238 oveq1 6556 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝑗 + 1) = (𝑘 + 1))
239238eleq1d 2672 . . . . . . . . 9 (𝑗 = 𝑘 → ((𝑗 + 1) ∈ (0...(𝑁 + 1)) ↔ (𝑘 + 1) ∈ (0...(𝑁 + 1))))
240239anbi2d 736 . . . . . . . 8 (𝑗 = 𝑘 → ((𝜑 ∧ (𝑗 + 1) ∈ (0...(𝑁 + 1))) ↔ (𝜑 ∧ (𝑘 + 1) ∈ (0...(𝑁 + 1)))))
241238oveq2d 6565 . . . . . . . . 9 (𝑗 = 𝑘 → (𝑋 + (𝑗 + 1)) = (𝑋 + (𝑘 + 1)))
242241eleq1d 2672 . . . . . . . 8 (𝑗 = 𝑘 → ((𝑋 + (𝑗 + 1)) ∈ 𝐴 ↔ (𝑋 + (𝑘 + 1)) ∈ 𝐴))
243240, 242imbi12d 333 . . . . . . 7 (𝑗 = 𝑘 → (((𝜑 ∧ (𝑗 + 1) ∈ (0...(𝑁 + 1))) → (𝑋 + (𝑗 + 1)) ∈ 𝐴) ↔ ((𝜑 ∧ (𝑘 + 1) ∈ (0...(𝑁 + 1))) → (𝑋 + (𝑘 + 1)) ∈ 𝐴)))
244243, 171chvarv 2251 . . . . . 6 ((𝜑 ∧ (𝑘 + 1) ∈ (0...(𝑁 + 1))) → (𝑋 + (𝑘 + 1)) ∈ 𝐴)
245237, 244sylan2 490 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑋 + (𝑘 + 1)) ∈ 𝐴)
246236, 245eqeltrd 2688 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑋 + 1) + 𝑘) ∈ 𝐴)
2471, 224, 24, 227, 246fwddifnval 31440 . . 3 (𝜑 → ((𝑁n 𝐹)‘(𝑋 + 1)) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘((𝑋 + 1) + 𝑘)))))
248217, 26sylan2 490 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑋 + 𝑘) ∈ 𝐴)
2491, 224, 24, 127, 248fwddifnval 31440 . . 3 (𝜑 → ((𝑁n 𝐹)‘𝑋) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
250247, 249oveq12d 6567 . 2 (𝜑 → (((𝑁n 𝐹)‘(𝑋 + 1)) − ((𝑁n 𝐹)‘𝑋)) = (Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘((𝑋 + 1) + 𝑘)))) − Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))))))
251223, 225, 2503eqtr4d 2654 1 (𝜑 → (((𝑁 + 1) △n 𝐹)‘𝑋) = (((𝑁n 𝐹)‘(𝑋 + 1)) − ((𝑁n 𝐹)‘𝑋)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896   ⊆ wss 3540  ifcif 4036  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   − cmin 10145  -cneg 10146   / cdiv 10563  ℕ0cn0 11169  ℤcz 11254  ℤ≥cuz 11563  ...cfz 12197  ↑cexp 12722  !cfa 12922  Ccbc 12951  Σcsu 14264   △n cfwddifn 31437 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-fwddifn 31438 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator