Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ranksng Structured version   Visualization version   GIF version

Theorem ranksng 31444
Description: The rank of a singleton. Closed form of ranksn 8600. (Contributed by Scott Fenton, 15-Jul-2015.)
Assertion
Ref Expression
ranksng (𝐴𝑉 → (rank‘{𝐴}) = suc (rank‘𝐴))

Proof of Theorem ranksng
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 4135 . . . 4 (𝑥 = 𝐴 → {𝑥} = {𝐴})
21fveq2d 6107 . . 3 (𝑥 = 𝐴 → (rank‘{𝑥}) = (rank‘{𝐴}))
3 fveq2 6103 . . . 4 (𝑥 = 𝐴 → (rank‘𝑥) = (rank‘𝐴))
4 suceq 5707 . . . 4 ((rank‘𝑥) = (rank‘𝐴) → suc (rank‘𝑥) = suc (rank‘𝐴))
53, 4syl 17 . . 3 (𝑥 = 𝐴 → suc (rank‘𝑥) = suc (rank‘𝐴))
62, 5eqeq12d 2625 . 2 (𝑥 = 𝐴 → ((rank‘{𝑥}) = suc (rank‘𝑥) ↔ (rank‘{𝐴}) = suc (rank‘𝐴)))
7 vex 3176 . . 3 𝑥 ∈ V
87ranksn 8600 . 2 (rank‘{𝑥}) = suc (rank‘𝑥)
96, 8vtoclg 3239 1 (𝐴𝑉 → (rank‘{𝐴}) = suc (rank‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  {csn 4125  suc csuc 5642  cfv 5804  rankcrnk 8509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-reg 8380  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-r1 8510  df-rank 8511
This theorem is referenced by:  hfsn  31456
  Copyright terms: Public domain W3C validator