MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankr1bg Structured version   Visualization version   GIF version

Theorem rankr1bg 8549
Description: A relationship between rank and 𝑅1. See rankr1ag 8548 for the membership version. (Contributed by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankr1bg ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1𝐵) ↔ (rank‘𝐴) ⊆ 𝐵))

Proof of Theorem rankr1bg
StepHypRef Expression
1 r1funlim 8512 . . . . 5 (Fun 𝑅1 ∧ Lim dom 𝑅1)
21simpri 477 . . . 4 Lim dom 𝑅1
3 limsuc 6941 . . . 4 (Lim dom 𝑅1 → (𝐵 ∈ dom 𝑅1 ↔ suc 𝐵 ∈ dom 𝑅1))
42, 3ax-mp 5 . . 3 (𝐵 ∈ dom 𝑅1 ↔ suc 𝐵 ∈ dom 𝑅1)
5 rankr1ag 8548 . . 3 ((𝐴 (𝑅1 “ On) ∧ suc 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝐴) ∈ suc 𝐵))
64, 5sylan2b 491 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝐴) ∈ suc 𝐵))
7 r1sucg 8515 . . . . 5 (𝐵 ∈ dom 𝑅1 → (𝑅1‘suc 𝐵) = 𝒫 (𝑅1𝐵))
87adantl 481 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝑅1‘suc 𝐵) = 𝒫 (𝑅1𝐵))
98eleq2d 2673 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘suc 𝐵) ↔ 𝐴 ∈ 𝒫 (𝑅1𝐵)))
10 fvex 6113 . . . 4 (𝑅1𝐵) ∈ V
1110elpw2 4755 . . 3 (𝐴 ∈ 𝒫 (𝑅1𝐵) ↔ 𝐴 ⊆ (𝑅1𝐵))
129, 11syl6rbb 276 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1𝐵) ↔ 𝐴 ∈ (𝑅1‘suc 𝐵)))
13 rankon 8541 . . 3 (rank‘𝐴) ∈ On
14 limord 5701 . . . . . 6 (Lim dom 𝑅1 → Ord dom 𝑅1)
152, 14ax-mp 5 . . . . 5 Ord dom 𝑅1
16 ordelon 5664 . . . . 5 ((Ord dom 𝑅1𝐵 ∈ dom 𝑅1) → 𝐵 ∈ On)
1715, 16mpan 702 . . . 4 (𝐵 ∈ dom 𝑅1𝐵 ∈ On)
1817adantl 481 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → 𝐵 ∈ On)
19 onsssuc 5730 . . 3 (((rank‘𝐴) ∈ On ∧ 𝐵 ∈ On) → ((rank‘𝐴) ⊆ 𝐵 ↔ (rank‘𝐴) ∈ suc 𝐵))
2013, 18, 19sylancr 694 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → ((rank‘𝐴) ⊆ 𝐵 ↔ (rank‘𝐴) ∈ suc 𝐵))
216, 12, 203bitr4d 299 1 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1𝐵) ↔ (rank‘𝐴) ⊆ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wss 3540  𝒫 cpw 4108   cuni 4372  dom cdm 5038  cima 5041  Ord word 5639  Oncon0 5640  Lim wlim 5641  suc csuc 5642  Fun wfun 5798  cfv 5804  𝑅1cr1 8508  rankcrnk 8509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-r1 8510  df-rank 8511
This theorem is referenced by:  r1rankidb  8550  rankval3b  8572  rankssb  8594  rankeq0b  8606  rankr1id  8608  rankr1b  8610
  Copyright terms: Public domain W3C validator