Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rankon | Structured version Visualization version GIF version |
Description: The rank of a set is an ordinal number. Proposition 9.15(1) of [TakeutiZaring] p. 79. (Contributed by NM, 5-Oct-2003.) (Revised by Mario Carneiro, 12-Sep-2013.) |
Ref | Expression |
---|---|
rankon | ⊢ (rank‘𝐴) ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankf 8540 | . 2 ⊢ rank:∪ (𝑅1 “ On)⟶On | |
2 | 0elon 5695 | . 2 ⊢ ∅ ∈ On | |
3 | 1, 2 | f0cli 6278 | 1 ⊢ (rank‘𝐴) ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1977 ∪ cuni 4372 “ cima 5041 Oncon0 5640 ‘cfv 5804 𝑅1cr1 8508 rankcrnk 8509 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-om 6958 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-r1 8510 df-rank 8511 |
This theorem is referenced by: rankr1ai 8544 rankr1bg 8549 rankr1clem 8566 rankr1c 8567 rankpwi 8569 rankelb 8570 wfelirr 8571 rankval3b 8572 ranksnb 8573 rankr1a 8582 bndrank 8587 unbndrank 8588 rankunb 8596 rankprb 8597 rankuni2b 8599 rankuni 8609 rankuniss 8612 rankval4 8613 rankbnd2 8615 rankc1 8616 rankc2 8617 rankelun 8618 rankelpr 8619 rankelop 8620 rankmapu 8624 rankxplim 8625 rankxplim3 8627 rankxpsuc 8628 tcrank 8630 scottex 8631 scott0 8632 dfac12lem2 8849 hsmexlem5 9135 r1limwun 9437 wunex3 9442 rankcf 9478 grur1 9521 elhf2 31452 hfuni 31461 dfac11 36650 |
Copyright terms: Public domain | W3C validator |