Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramcl2 Structured version   Visualization version   GIF version

Theorem ramcl2 15558
 Description: The Ramsey number is either a nonnegative integer or plus infinity. (Contributed by Mario Carneiro, 20-Apr-2015.) (Revised by AV, 14-Sep-2020.)
Assertion
Ref Expression
ramcl2 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) ∈ (ℕ0 ∪ {+∞}))

Proof of Theorem ramcl2
Dummy variables 𝑓 𝑐 𝑛 𝑠 𝑥 𝑎 𝑏 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . . 5 (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖}) = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})
2 eqid 2610 . . . . 5 {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (#‘𝑠) → ∀𝑓 ∈ (𝑅𝑚 (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐})))} = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (#‘𝑠) → ∀𝑓 ∈ (𝑅𝑚 (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐})))}
31, 2ramcl2lem 15551 . . . 4 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) = if({𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (#‘𝑠) → ∀𝑓 ∈ (𝑅𝑚 (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐})))} = ∅, +∞, inf({𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (#‘𝑠) → ∀𝑓 ∈ (𝑅𝑚 (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐})))}, ℝ, < )))
4 iftrue 4042 . . . 4 ({𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (#‘𝑠) → ∀𝑓 ∈ (𝑅𝑚 (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐})))} = ∅ → if({𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (#‘𝑠) → ∀𝑓 ∈ (𝑅𝑚 (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐})))} = ∅, +∞, inf({𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (#‘𝑠) → ∀𝑓 ∈ (𝑅𝑚 (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐})))}, ℝ, < )) = +∞)
53, 4sylan9eq 2664 . . 3 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (#‘𝑠) → ∀𝑓 ∈ (𝑅𝑚 (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐})))} = ∅) → (𝑀 Ramsey 𝐹) = +∞)
6 ssun2 3739 . . . 4 {+∞} ⊆ (ℕ0 ∪ {+∞})
7 pnfex 9972 . . . . 5 +∞ ∈ V
87snss 4259 . . . 4 (+∞ ∈ (ℕ0 ∪ {+∞}) ↔ {+∞} ⊆ (ℕ0 ∪ {+∞}))
96, 8mpbir 220 . . 3 +∞ ∈ (ℕ0 ∪ {+∞})
105, 9syl6eqel 2696 . 2 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (#‘𝑠) → ∀𝑓 ∈ (𝑅𝑚 (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐})))} = ∅) → (𝑀 Ramsey 𝐹) ∈ (ℕ0 ∪ {+∞}))
11 ssun1 3738 . . 3 0 ⊆ (ℕ0 ∪ {+∞})
121, 2ramtcl2 15553 . . . 4 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → ((𝑀 Ramsey 𝐹) ∈ ℕ0 ↔ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (#‘𝑠) → ∀𝑓 ∈ (𝑅𝑚 (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐})))} ≠ ∅))
1312biimpar 501 . . 3 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (#‘𝑠) → ∀𝑓 ∈ (𝑅𝑚 (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐})))} ≠ ∅) → (𝑀 Ramsey 𝐹) ∈ ℕ0)
1411, 13sseldi 3566 . 2 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (#‘𝑠) → ∀𝑓 ∈ (𝑅𝑚 (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐})))} ≠ ∅) → (𝑀 Ramsey 𝐹) ∈ (ℕ0 ∪ {+∞}))
1510, 14pm2.61dane 2869 1 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) ∈ (ℕ0 ∪ {+∞}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031  ∀wal 1473   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897  {crab 2900  Vcvv 3173   ∪ cun 3538   ⊆ wss 3540  ∅c0 3874  ifcif 4036  𝒫 cpw 4108  {csn 4125   class class class wbr 4583  ◡ccnv 5037   “ cima 5041  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551   ↑𝑚 cmap 7744  infcinf 8230  ℝcr 9814  +∞cpnf 9950   < clt 9953   ≤ cle 9954  ℕ0cn0 11169  #chash 12979   Ramsey cram 15541 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-ram 15543 This theorem is referenced by:  ramxrcl  15559  ramubcl  15560
 Copyright terms: Public domain W3C validator