MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r0cld Structured version   Visualization version   GIF version

Theorem r0cld 21351
Description: The analogue of the T1 axiom (singletons are closed) for an R0 space. In an R0 space the set of all points topologically indistinguishable from 𝐴 is closed. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
r0cld ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → {𝑧𝑋 ∣ ∀𝑜𝐽 (𝑧𝑜𝐴𝑜)} ∈ (Clsd‘𝐽))
Distinct variable groups:   𝑥,𝑜,𝑦,𝑧,𝐴   𝑜,𝐽,𝑥,𝑦,𝑧   𝑜,𝐹,𝑧   𝑜,𝑋,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem r0cld
StepHypRef Expression
1 kqval.2 . . . . . 6 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
21kqffn 21338 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
323ad2ant1 1075 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → 𝐹 Fn 𝑋)
4 fncnvima2 6247 . . . 4 (𝐹 Fn 𝑋 → (𝐹 “ {(𝐹𝐴)}) = {𝑧𝑋 ∣ (𝐹𝑧) ∈ {(𝐹𝐴)}})
53, 4syl 17 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → (𝐹 “ {(𝐹𝐴)}) = {𝑧𝑋 ∣ (𝐹𝑧) ∈ {(𝐹𝐴)}})
6 fvex 6113 . . . . . 6 (𝐹𝑧) ∈ V
76elsn 4140 . . . . 5 ((𝐹𝑧) ∈ {(𝐹𝐴)} ↔ (𝐹𝑧) = (𝐹𝐴))
8 simpl1 1057 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) ∧ 𝑧𝑋) → 𝐽 ∈ (TopOn‘𝑋))
9 simpr 476 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) ∧ 𝑧𝑋) → 𝑧𝑋)
10 simpl3 1059 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) ∧ 𝑧𝑋) → 𝐴𝑋)
111kqfeq 21337 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋𝐴𝑋) → ((𝐹𝑧) = (𝐹𝐴) ↔ ∀𝑦𝐽 (𝑧𝑦𝐴𝑦)))
12 eleq2 2677 . . . . . . . . 9 (𝑦 = 𝑜 → (𝑧𝑦𝑧𝑜))
13 eleq2 2677 . . . . . . . . 9 (𝑦 = 𝑜 → (𝐴𝑦𝐴𝑜))
1412, 13bibi12d 334 . . . . . . . 8 (𝑦 = 𝑜 → ((𝑧𝑦𝐴𝑦) ↔ (𝑧𝑜𝐴𝑜)))
1514cbvralv 3147 . . . . . . 7 (∀𝑦𝐽 (𝑧𝑦𝐴𝑦) ↔ ∀𝑜𝐽 (𝑧𝑜𝐴𝑜))
1611, 15syl6bb 275 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋𝐴𝑋) → ((𝐹𝑧) = (𝐹𝐴) ↔ ∀𝑜𝐽 (𝑧𝑜𝐴𝑜)))
178, 9, 10, 16syl3anc 1318 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) ∧ 𝑧𝑋) → ((𝐹𝑧) = (𝐹𝐴) ↔ ∀𝑜𝐽 (𝑧𝑜𝐴𝑜)))
187, 17syl5bb 271 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) ∧ 𝑧𝑋) → ((𝐹𝑧) ∈ {(𝐹𝐴)} ↔ ∀𝑜𝐽 (𝑧𝑜𝐴𝑜)))
1918rabbidva 3163 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → {𝑧𝑋 ∣ (𝐹𝑧) ∈ {(𝐹𝐴)}} = {𝑧𝑋 ∣ ∀𝑜𝐽 (𝑧𝑜𝐴𝑜)})
205, 19eqtrd 2644 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → (𝐹 “ {(𝐹𝐴)}) = {𝑧𝑋 ∣ ∀𝑜𝐽 (𝑧𝑜𝐴𝑜)})
211kqid 21341 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
22213ad2ant1 1075 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
23 simp2 1055 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → (KQ‘𝐽) ∈ Fre)
24 simp3 1056 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → 𝐴𝑋)
25 fnfvelrn 6264 . . . . . 6 ((𝐹 Fn 𝑋𝐴𝑋) → (𝐹𝐴) ∈ ran 𝐹)
263, 24, 25syl2anc 691 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → (𝐹𝐴) ∈ ran 𝐹)
271kqtopon 21340 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
28273ad2ant1 1075 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
29 toponuni 20542 . . . . . 6 ((KQ‘𝐽) ∈ (TopOn‘ran 𝐹) → ran 𝐹 = (KQ‘𝐽))
3028, 29syl 17 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → ran 𝐹 = (KQ‘𝐽))
3126, 30eleqtrd 2690 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → (𝐹𝐴) ∈ (KQ‘𝐽))
32 eqid 2610 . . . . 5 (KQ‘𝐽) = (KQ‘𝐽)
3332t1sncld 20940 . . . 4 (((KQ‘𝐽) ∈ Fre ∧ (𝐹𝐴) ∈ (KQ‘𝐽)) → {(𝐹𝐴)} ∈ (Clsd‘(KQ‘𝐽)))
3423, 31, 33syl2anc 691 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → {(𝐹𝐴)} ∈ (Clsd‘(KQ‘𝐽)))
35 cnclima 20882 . . 3 ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ {(𝐹𝐴)} ∈ (Clsd‘(KQ‘𝐽))) → (𝐹 “ {(𝐹𝐴)}) ∈ (Clsd‘𝐽))
3622, 34, 35syl2anc 691 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → (𝐹 “ {(𝐹𝐴)}) ∈ (Clsd‘𝐽))
3720, 36eqeltrrd 2689 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → {𝑧𝑋 ∣ ∀𝑜𝐽 (𝑧𝑜𝐴𝑜)} ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  {crab 2900  {csn 4125   cuni 4372  cmpt 4643  ccnv 5037  ran crn 5039  cima 5041   Fn wfn 5799  cfv 5804  (class class class)co 6549  TopOnctopon 20518  Clsdccld 20630   Cn ccn 20838  Frect1 20921  KQckq 21306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-qtop 15990  df-top 20521  df-topon 20523  df-cld 20633  df-cn 20841  df-t1 20928  df-kq 21307
This theorem is referenced by:  nrmr0reg  21362
  Copyright terms: Public domain W3C validator