MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnrmopn Structured version   Visualization version   GIF version

Theorem pnrmopn 20957
Description: An open set in a perfectly normal space is a countable union of closed sets. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
pnrmopn ((𝐽 ∈ PNrm ∧ 𝐴𝐽) → ∃𝑓 ∈ ((Clsd‘𝐽) ↑𝑚 ℕ)𝐴 = ran 𝑓)
Distinct variable groups:   𝐴,𝑓   𝑓,𝐽

Proof of Theorem pnrmopn
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pnrmtop 20955 . . . 4 (𝐽 ∈ PNrm → 𝐽 ∈ Top)
2 eqid 2610 . . . . 5 𝐽 = 𝐽
32opncld 20647 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝐽) → ( 𝐽𝐴) ∈ (Clsd‘𝐽))
41, 3sylan 487 . . 3 ((𝐽 ∈ PNrm ∧ 𝐴𝐽) → ( 𝐽𝐴) ∈ (Clsd‘𝐽))
5 pnrmcld 20956 . . 3 ((𝐽 ∈ PNrm ∧ ( 𝐽𝐴) ∈ (Clsd‘𝐽)) → ∃𝑔 ∈ (𝐽𝑚 ℕ)( 𝐽𝐴) = ran 𝑔)
64, 5syldan 486 . 2 ((𝐽 ∈ PNrm ∧ 𝐴𝐽) → ∃𝑔 ∈ (𝐽𝑚 ℕ)( 𝐽𝐴) = ran 𝑔)
71ad2antrr 758 . . . . . . . 8 (((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽𝑚 ℕ)) ∧ 𝑥 ∈ ℕ) → 𝐽 ∈ Top)
8 elmapi 7765 . . . . . . . . . 10 (𝑔 ∈ (𝐽𝑚 ℕ) → 𝑔:ℕ⟶𝐽)
98adantl 481 . . . . . . . . 9 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽𝑚 ℕ)) → 𝑔:ℕ⟶𝐽)
109ffvelrnda 6267 . . . . . . . 8 (((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽𝑚 ℕ)) ∧ 𝑥 ∈ ℕ) → (𝑔𝑥) ∈ 𝐽)
112opncld 20647 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑔𝑥) ∈ 𝐽) → ( 𝐽 ∖ (𝑔𝑥)) ∈ (Clsd‘𝐽))
127, 10, 11syl2anc 691 . . . . . . 7 (((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽𝑚 ℕ)) ∧ 𝑥 ∈ ℕ) → ( 𝐽 ∖ (𝑔𝑥)) ∈ (Clsd‘𝐽))
13 eqid 2610 . . . . . . 7 (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) = (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥)))
1412, 13fmptd 6292 . . . . . 6 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽𝑚 ℕ)) → (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))):ℕ⟶(Clsd‘𝐽))
15 fvex 6113 . . . . . . 7 (Clsd‘𝐽) ∈ V
16 nnex 10903 . . . . . . 7 ℕ ∈ V
1715, 16elmap 7772 . . . . . 6 ((𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) ∈ ((Clsd‘𝐽) ↑𝑚 ℕ) ↔ (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))):ℕ⟶(Clsd‘𝐽))
1814, 17sylibr 223 . . . . 5 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽𝑚 ℕ)) → (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) ∈ ((Clsd‘𝐽) ↑𝑚 ℕ))
19 iundif2 4523 . . . . . . 7 𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) = ( 𝐽 𝑥 ∈ ℕ (𝑔𝑥))
20 ffn 5958 . . . . . . . . 9 (𝑔:ℕ⟶𝐽𝑔 Fn ℕ)
21 fniinfv 6167 . . . . . . . . 9 (𝑔 Fn ℕ → 𝑥 ∈ ℕ (𝑔𝑥) = ran 𝑔)
229, 20, 213syl 18 . . . . . . . 8 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽𝑚 ℕ)) → 𝑥 ∈ ℕ (𝑔𝑥) = ran 𝑔)
2322difeq2d 3690 . . . . . . 7 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽𝑚 ℕ)) → ( 𝐽 𝑥 ∈ ℕ (𝑔𝑥)) = ( 𝐽 ran 𝑔))
2419, 23syl5eq 2656 . . . . . 6 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽𝑚 ℕ)) → 𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) = ( 𝐽 ran 𝑔))
25 uniexg 6853 . . . . . . . . . . 11 (𝐽 ∈ PNrm → 𝐽 ∈ V)
26 difexg 4735 . . . . . . . . . . 11 ( 𝐽 ∈ V → ( 𝐽 ∖ (𝑔𝑥)) ∈ V)
2725, 26syl 17 . . . . . . . . . 10 (𝐽 ∈ PNrm → ( 𝐽 ∖ (𝑔𝑥)) ∈ V)
2827ralrimivw 2950 . . . . . . . . 9 (𝐽 ∈ PNrm → ∀𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) ∈ V)
2928adantr 480 . . . . . . . 8 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽𝑚 ℕ)) → ∀𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) ∈ V)
30 dfiun2g 4488 . . . . . . . 8 (∀𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) ∈ V → 𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) = {𝑓 ∣ ∃𝑥 ∈ ℕ 𝑓 = ( 𝐽 ∖ (𝑔𝑥))})
3129, 30syl 17 . . . . . . 7 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽𝑚 ℕ)) → 𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) = {𝑓 ∣ ∃𝑥 ∈ ℕ 𝑓 = ( 𝐽 ∖ (𝑔𝑥))})
3213rnmpt 5292 . . . . . . . 8 ran (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) = {𝑓 ∣ ∃𝑥 ∈ ℕ 𝑓 = ( 𝐽 ∖ (𝑔𝑥))}
3332unieqi 4381 . . . . . . 7 ran (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) = {𝑓 ∣ ∃𝑥 ∈ ℕ 𝑓 = ( 𝐽 ∖ (𝑔𝑥))}
3431, 33syl6eqr 2662 . . . . . 6 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽𝑚 ℕ)) → 𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) = ran (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))))
3524, 34eqtr3d 2646 . . . . 5 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽𝑚 ℕ)) → ( 𝐽 ran 𝑔) = ran (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))))
36 rneq 5272 . . . . . . . 8 (𝑓 = (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) → ran 𝑓 = ran (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))))
3736unieqd 4382 . . . . . . 7 (𝑓 = (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) → ran 𝑓 = ran (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))))
3837eqeq2d 2620 . . . . . 6 (𝑓 = (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) → (( 𝐽 ran 𝑔) = ran 𝑓 ↔ ( 𝐽 ran 𝑔) = ran (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥)))))
3938rspcev 3282 . . . . 5 (((𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) ∈ ((Clsd‘𝐽) ↑𝑚 ℕ) ∧ ( 𝐽 ran 𝑔) = ran (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥)))) → ∃𝑓 ∈ ((Clsd‘𝐽) ↑𝑚 ℕ)( 𝐽 ran 𝑔) = ran 𝑓)
4018, 35, 39syl2anc 691 . . . 4 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽𝑚 ℕ)) → ∃𝑓 ∈ ((Clsd‘𝐽) ↑𝑚 ℕ)( 𝐽 ran 𝑔) = ran 𝑓)
4140ad2ant2r 779 . . 3 (((𝐽 ∈ PNrm ∧ 𝐴𝐽) ∧ (𝑔 ∈ (𝐽𝑚 ℕ) ∧ ( 𝐽𝐴) = ran 𝑔)) → ∃𝑓 ∈ ((Clsd‘𝐽) ↑𝑚 ℕ)( 𝐽 ran 𝑔) = ran 𝑓)
42 difeq2 3684 . . . . . . . 8 (( 𝐽𝐴) = ran 𝑔 → ( 𝐽 ∖ ( 𝐽𝐴)) = ( 𝐽 ran 𝑔))
4342eqcomd 2616 . . . . . . 7 (( 𝐽𝐴) = ran 𝑔 → ( 𝐽 ran 𝑔) = ( 𝐽 ∖ ( 𝐽𝐴)))
44 elssuni 4403 . . . . . . . 8 (𝐴𝐽𝐴 𝐽)
45 dfss4 3820 . . . . . . . 8 (𝐴 𝐽 ↔ ( 𝐽 ∖ ( 𝐽𝐴)) = 𝐴)
4644, 45sylib 207 . . . . . . 7 (𝐴𝐽 → ( 𝐽 ∖ ( 𝐽𝐴)) = 𝐴)
4743, 46sylan9eqr 2666 . . . . . 6 ((𝐴𝐽 ∧ ( 𝐽𝐴) = ran 𝑔) → ( 𝐽 ran 𝑔) = 𝐴)
4847ad2ant2l 778 . . . . 5 (((𝐽 ∈ PNrm ∧ 𝐴𝐽) ∧ (𝑔 ∈ (𝐽𝑚 ℕ) ∧ ( 𝐽𝐴) = ran 𝑔)) → ( 𝐽 ran 𝑔) = 𝐴)
4948eqeq1d 2612 . . . 4 (((𝐽 ∈ PNrm ∧ 𝐴𝐽) ∧ (𝑔 ∈ (𝐽𝑚 ℕ) ∧ ( 𝐽𝐴) = ran 𝑔)) → (( 𝐽 ran 𝑔) = ran 𝑓𝐴 = ran 𝑓))
5049rexbidv 3034 . . 3 (((𝐽 ∈ PNrm ∧ 𝐴𝐽) ∧ (𝑔 ∈ (𝐽𝑚 ℕ) ∧ ( 𝐽𝐴) = ran 𝑔)) → (∃𝑓 ∈ ((Clsd‘𝐽) ↑𝑚 ℕ)( 𝐽 ran 𝑔) = ran 𝑓 ↔ ∃𝑓 ∈ ((Clsd‘𝐽) ↑𝑚 ℕ)𝐴 = ran 𝑓))
5141, 50mpbid 221 . 2 (((𝐽 ∈ PNrm ∧ 𝐴𝐽) ∧ (𝑔 ∈ (𝐽𝑚 ℕ) ∧ ( 𝐽𝐴) = ran 𝑔)) → ∃𝑓 ∈ ((Clsd‘𝐽) ↑𝑚 ℕ)𝐴 = ran 𝑓)
526, 51rexlimddv 3017 1 ((𝐽 ∈ PNrm ∧ 𝐴𝐽) → ∃𝑓 ∈ ((Clsd‘𝐽) ↑𝑚 ℕ)𝐴 = ran 𝑓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  {cab 2596  wral 2896  wrex 2897  Vcvv 3173  cdif 3537  wss 3540   cuni 4372   cint 4410   ciun 4455   ciin 4456  cmpt 4643  ran crn 5039   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  cn 10897  Topctop 20517  Clsdccld 20630  PNrmcpnrm 20926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-i2m1 9883  ax-1ne0 9884  ax-rrecex 9887  ax-cnre 9888
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-map 7746  df-nn 10898  df-top 20521  df-cld 20633  df-nrm 20931  df-pnrm 20933
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator