MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnrmopn Structured version   Visualization version   Unicode version

Theorem pnrmopn 20408
Description: An open set in a perfectly normal space is a countable union of closed sets. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
pnrmopn  |-  ( ( J  e. PNrm  /\  A  e.  J )  ->  E. f  e.  ( ( Clsd `  J
)  ^m  NN ) A  =  U. ran  f
)
Distinct variable groups:    A, f    f, J

Proof of Theorem pnrmopn
Dummy variables  g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pnrmtop 20406 . . . 4  |-  ( J  e. PNrm  ->  J  e.  Top )
2 eqid 2462 . . . . 5  |-  U. J  =  U. J
32opncld 20097 . . . 4  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( U. J  \  A )  e.  (
Clsd `  J )
)
41, 3sylan 478 . . 3  |-  ( ( J  e. PNrm  /\  A  e.  J )  ->  ( U. J  \  A )  e.  ( Clsd `  J
) )
5 pnrmcld 20407 . . 3  |-  ( ( J  e. PNrm  /\  ( U. J  \  A )  e.  ( Clsd `  J
) )  ->  E. g  e.  ( J  ^m  NN ) ( U. J  \  A )  =  |^| ran  g )
64, 5syldan 477 . 2  |-  ( ( J  e. PNrm  /\  A  e.  J )  ->  E. g  e.  ( J  ^m  NN ) ( U. J  \  A )  =  |^| ran  g )
71ad2antrr 737 . . . . . . . 8  |-  ( ( ( J  e. PNrm  /\  g  e.  ( J  ^m  NN ) )  /\  x  e.  NN )  ->  J  e.  Top )
8 elmapi 7519 . . . . . . . . . 10  |-  ( g  e.  ( J  ^m  NN )  ->  g : NN --> J )
98adantl 472 . . . . . . . . 9  |-  ( ( J  e. PNrm  /\  g  e.  ( J  ^m  NN ) )  ->  g : NN --> J )
109ffvelrnda 6045 . . . . . . . 8  |-  ( ( ( J  e. PNrm  /\  g  e.  ( J  ^m  NN ) )  /\  x  e.  NN )  ->  ( g `  x
)  e.  J )
112opncld 20097 . . . . . . . 8  |-  ( ( J  e.  Top  /\  ( g `  x
)  e.  J )  ->  ( U. J  \  ( g `  x
) )  e.  (
Clsd `  J )
)
127, 10, 11syl2anc 671 . . . . . . 7  |-  ( ( ( J  e. PNrm  /\  g  e.  ( J  ^m  NN ) )  /\  x  e.  NN )  ->  ( U. J  \ 
( g `  x
) )  e.  (
Clsd `  J )
)
13 eqid 2462 . . . . . . 7  |-  ( x  e.  NN  |->  ( U. J  \  ( g `  x ) ) )  =  ( x  e.  NN  |->  ( U. J  \  ( g `  x
) ) )
1412, 13fmptd 6069 . . . . . 6  |-  ( ( J  e. PNrm  /\  g  e.  ( J  ^m  NN ) )  ->  (
x  e.  NN  |->  ( U. J  \  (
g `  x )
) ) : NN --> ( Clsd `  J )
)
15 fvex 5898 . . . . . . 7  |-  ( Clsd `  J )  e.  _V
16 nnex 10643 . . . . . . 7  |-  NN  e.  _V
1715, 16elmap 7526 . . . . . 6  |-  ( ( x  e.  NN  |->  ( U. J  \  (
g `  x )
) )  e.  ( ( Clsd `  J
)  ^m  NN )  <->  ( x  e.  NN  |->  ( U. J  \  (
g `  x )
) ) : NN --> ( Clsd `  J )
)
1814, 17sylibr 217 . . . . 5  |-  ( ( J  e. PNrm  /\  g  e.  ( J  ^m  NN ) )  ->  (
x  e.  NN  |->  ( U. J  \  (
g `  x )
) )  e.  ( ( Clsd `  J
)  ^m  NN )
)
19 iundif2 4359 . . . . . . 7  |-  U_ x  e.  NN  ( U. J  \  ( g `  x
) )  =  ( U. J  \  |^|_ x  e.  NN  ( g `
 x ) )
20 ffn 5751 . . . . . . . . 9  |-  ( g : NN --> J  -> 
g  Fn  NN )
21 fniinfv 5947 . . . . . . . . 9  |-  ( g  Fn  NN  ->  |^|_ x  e.  NN  ( g `  x )  =  |^| ran  g )
229, 20, 213syl 18 . . . . . . . 8  |-  ( ( J  e. PNrm  /\  g  e.  ( J  ^m  NN ) )  ->  |^|_ x  e.  NN  ( g `  x )  =  |^| ran  g )
2322difeq2d 3563 . . . . . . 7  |-  ( ( J  e. PNrm  /\  g  e.  ( J  ^m  NN ) )  ->  ( U. J  \  |^|_ x  e.  NN  ( g `  x ) )  =  ( U. J  \  |^| ran  g ) )
2419, 23syl5eq 2508 . . . . . 6  |-  ( ( J  e. PNrm  /\  g  e.  ( J  ^m  NN ) )  ->  U_ x  e.  NN  ( U. J  \  ( g `  x
) )  =  ( U. J  \  |^| ran  g ) )
25 uniexg 6615 . . . . . . . . . . 11  |-  ( J  e. PNrm  ->  U. J  e.  _V )
26 difexg 4565 . . . . . . . . . . 11  |-  ( U. J  e.  _V  ->  ( U. J  \  (
g `  x )
)  e.  _V )
2725, 26syl 17 . . . . . . . . . 10  |-  ( J  e. PNrm  ->  ( U. J  \  ( g `  x
) )  e.  _V )
2827ralrimivw 2815 . . . . . . . . 9  |-  ( J  e. PNrm  ->  A. x  e.  NN  ( U. J  \  (
g `  x )
)  e.  _V )
2928adantr 471 . . . . . . . 8  |-  ( ( J  e. PNrm  /\  g  e.  ( J  ^m  NN ) )  ->  A. x  e.  NN  ( U. J  \  ( g `  x
) )  e.  _V )
30 dfiun2g 4324 . . . . . . . 8  |-  ( A. x  e.  NN  ( U. J  \  (
g `  x )
)  e.  _V  ->  U_ x  e.  NN  ( U. J  \  (
g `  x )
)  =  U. {
f  |  E. x  e.  NN  f  =  ( U. J  \  (
g `  x )
) } )
3129, 30syl 17 . . . . . . 7  |-  ( ( J  e. PNrm  /\  g  e.  ( J  ^m  NN ) )  ->  U_ x  e.  NN  ( U. J  \  ( g `  x
) )  =  U. { f  |  E. x  e.  NN  f  =  ( U. J  \  ( g `  x
) ) } )
3213rnmpt 5099 . . . . . . . 8  |-  ran  (
x  e.  NN  |->  ( U. J  \  (
g `  x )
) )  =  {
f  |  E. x  e.  NN  f  =  ( U. J  \  (
g `  x )
) }
3332unieqi 4221 . . . . . . 7  |-  U. ran  ( x  e.  NN  |->  ( U. J  \  (
g `  x )
) )  =  U. { f  |  E. x  e.  NN  f  =  ( U. J  \  ( g `  x
) ) }
3431, 33syl6eqr 2514 . . . . . 6  |-  ( ( J  e. PNrm  /\  g  e.  ( J  ^m  NN ) )  ->  U_ x  e.  NN  ( U. J  \  ( g `  x
) )  =  U. ran  ( x  e.  NN  |->  ( U. J  \  (
g `  x )
) ) )
3524, 34eqtr3d 2498 . . . . 5  |-  ( ( J  e. PNrm  /\  g  e.  ( J  ^m  NN ) )  ->  ( U. J  \  |^| ran  g )  =  U. ran  ( x  e.  NN  |->  ( U. J  \  (
g `  x )
) ) )
36 rneq 5079 . . . . . . . 8  |-  ( f  =  ( x  e.  NN  |->  ( U. J  \  ( g `  x
) ) )  ->  ran  f  =  ran  ( x  e.  NN  |->  ( U. J  \  (
g `  x )
) ) )
3736unieqd 4222 . . . . . . 7  |-  ( f  =  ( x  e.  NN  |->  ( U. J  \  ( g `  x
) ) )  ->  U. ran  f  =  U. ran  ( x  e.  NN  |->  ( U. J  \  (
g `  x )
) ) )
3837eqeq2d 2472 . . . . . 6  |-  ( f  =  ( x  e.  NN  |->  ( U. J  \  ( g `  x
) ) )  -> 
( ( U. J  \ 
|^| ran  g )  =  U. ran  f  <->  ( U. J  \  |^| ran  g
)  =  U. ran  ( x  e.  NN  |->  ( U. J  \  (
g `  x )
) ) ) )
3938rspcev 3162 . . . . 5  |-  ( ( ( x  e.  NN  |->  ( U. J  \  (
g `  x )
) )  e.  ( ( Clsd `  J
)  ^m  NN )  /\  ( U. J  \  |^| ran  g )  = 
U. ran  ( x  e.  NN  |->  ( U. J  \  ( g `  x
) ) ) )  ->  E. f  e.  ( ( Clsd `  J
)  ^m  NN )
( U. J  \  |^| ran  g )  = 
U. ran  f )
4018, 35, 39syl2anc 671 . . . 4  |-  ( ( J  e. PNrm  /\  g  e.  ( J  ^m  NN ) )  ->  E. f  e.  ( ( Clsd `  J
)  ^m  NN )
( U. J  \  |^| ran  g )  = 
U. ran  f )
4140ad2ant2r 758 . . 3  |-  ( ( ( J  e. PNrm  /\  A  e.  J )  /\  ( g  e.  ( J  ^m  NN )  /\  ( U. J  \  A )  =  |^| ran  g ) )  ->  E. f  e.  (
( Clsd `  J )  ^m  NN ) ( U. J  \  |^| ran  g
)  =  U. ran  f )
42 difeq2 3557 . . . . . . . 8  |-  ( ( U. J  \  A
)  =  |^| ran  g  ->  ( U. J  \  ( U. J  \  A ) )  =  ( U. J  \  |^| ran  g ) )
4342eqcomd 2468 . . . . . . 7  |-  ( ( U. J  \  A
)  =  |^| ran  g  ->  ( U. J  \ 
|^| ran  g )  =  ( U. J  \  ( U. J  \  A ) ) )
44 elssuni 4241 . . . . . . . 8  |-  ( A  e.  J  ->  A  C_ 
U. J )
45 dfss4 3689 . . . . . . . 8  |-  ( A 
C_  U. J  <->  ( U. J  \  ( U. J  \  A ) )  =  A )
4644, 45sylib 201 . . . . . . 7  |-  ( A  e.  J  ->  ( U. J  \  ( U. J  \  A ) )  =  A )
4743, 46sylan9eqr 2518 . . . . . 6  |-  ( ( A  e.  J  /\  ( U. J  \  A
)  =  |^| ran  g )  ->  ( U. J  \  |^| ran  g )  =  A )
4847ad2ant2l 757 . . . . 5  |-  ( ( ( J  e. PNrm  /\  A  e.  J )  /\  ( g  e.  ( J  ^m  NN )  /\  ( U. J  \  A )  =  |^| ran  g ) )  -> 
( U. J  \  |^| ran  g )  =  A )
4948eqeq1d 2464 . . . 4  |-  ( ( ( J  e. PNrm  /\  A  e.  J )  /\  ( g  e.  ( J  ^m  NN )  /\  ( U. J  \  A )  =  |^| ran  g ) )  -> 
( ( U. J  \ 
|^| ran  g )  =  U. ran  f  <->  A  =  U. ran  f ) )
5049rexbidv 2913 . . 3  |-  ( ( ( J  e. PNrm  /\  A  e.  J )  /\  ( g  e.  ( J  ^m  NN )  /\  ( U. J  \  A )  =  |^| ran  g ) )  -> 
( E. f  e.  ( ( Clsd `  J
)  ^m  NN )
( U. J  \  |^| ran  g )  = 
U. ran  f  <->  E. f  e.  ( ( Clsd `  J
)  ^m  NN ) A  =  U. ran  f
) )
5141, 50mpbid 215 . 2  |-  ( ( ( J  e. PNrm  /\  A  e.  J )  /\  ( g  e.  ( J  ^m  NN )  /\  ( U. J  \  A )  =  |^| ran  g ) )  ->  E. f  e.  (
( Clsd `  J )  ^m  NN ) A  = 
U. ran  f )
526, 51rexlimddv 2895 1  |-  ( ( J  e. PNrm  /\  A  e.  J )  ->  E. f  e.  ( ( Clsd `  J
)  ^m  NN ) A  =  U. ran  f
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 375    = wceq 1455    e. wcel 1898   {cab 2448   A.wral 2749   E.wrex 2750   _Vcvv 3057    \ cdif 3413    C_ wss 3416   U.cuni 4212   |^|cint 4248   U_ciun 4292   |^|_ciin 4293    |-> cmpt 4475   ran crn 4854    Fn wfn 5596   -->wf 5597   ` cfv 5601  (class class class)co 6315    ^m cmap 7498   NNcn 10637   Topctop 19966   Clsdccld 20080  PNrmcpnrm 20377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-sep 4539  ax-nul 4548  ax-pow 4595  ax-pr 4653  ax-un 6610  ax-cnex 9621  ax-resscn 9622  ax-1cn 9623  ax-icn 9624  ax-addcl 9625  ax-addrcl 9626  ax-mulcl 9627  ax-mulrcl 9628  ax-i2m1 9633  ax-1ne0 9634  ax-rrecex 9637  ax-cnre 9638
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-ral 2754  df-rex 2755  df-reu 2756  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-int 4249  df-iun 4294  df-iin 4295  df-br 4417  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-ov 6318  df-oprab 6319  df-mpt2 6320  df-om 6720  df-1st 6820  df-2nd 6821  df-wrecs 7054  df-recs 7116  df-rdg 7154  df-map 7500  df-nn 10638  df-top 19970  df-cld 20083  df-nrm 20382  df-pnrm 20384
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator