Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pnrmcld | Structured version Visualization version GIF version |
Description: A closed set in a perfectly normal space is a countable intersection of open sets. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
pnrmcld | ⊢ ((𝐽 ∈ PNrm ∧ 𝐴 ∈ (Clsd‘𝐽)) → ∃𝑓 ∈ (𝐽 ↑𝑚 ℕ)𝐴 = ∩ ran 𝑓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ispnrm 20953 | . . . 4 ⊢ (𝐽 ∈ PNrm ↔ (𝐽 ∈ Nrm ∧ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽 ↑𝑚 ℕ) ↦ ∩ ran 𝑓))) | |
2 | 1 | simprbi 479 | . . 3 ⊢ (𝐽 ∈ PNrm → (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽 ↑𝑚 ℕ) ↦ ∩ ran 𝑓)) |
3 | 2 | sselda 3568 | . 2 ⊢ ((𝐽 ∈ PNrm ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝐴 ∈ ran (𝑓 ∈ (𝐽 ↑𝑚 ℕ) ↦ ∩ ran 𝑓)) |
4 | eqid 2610 | . . . 4 ⊢ (𝑓 ∈ (𝐽 ↑𝑚 ℕ) ↦ ∩ ran 𝑓) = (𝑓 ∈ (𝐽 ↑𝑚 ℕ) ↦ ∩ ran 𝑓) | |
5 | 4 | elrnmpt 5293 | . . 3 ⊢ (𝐴 ∈ (Clsd‘𝐽) → (𝐴 ∈ ran (𝑓 ∈ (𝐽 ↑𝑚 ℕ) ↦ ∩ ran 𝑓) ↔ ∃𝑓 ∈ (𝐽 ↑𝑚 ℕ)𝐴 = ∩ ran 𝑓)) |
6 | 5 | adantl 481 | . 2 ⊢ ((𝐽 ∈ PNrm ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐴 ∈ ran (𝑓 ∈ (𝐽 ↑𝑚 ℕ) ↦ ∩ ran 𝑓) ↔ ∃𝑓 ∈ (𝐽 ↑𝑚 ℕ)𝐴 = ∩ ran 𝑓)) |
7 | 3, 6 | mpbid 221 | 1 ⊢ ((𝐽 ∈ PNrm ∧ 𝐴 ∈ (Clsd‘𝐽)) → ∃𝑓 ∈ (𝐽 ↑𝑚 ℕ)𝐴 = ∩ ran 𝑓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∃wrex 2897 ⊆ wss 3540 ∩ cint 4410 ↦ cmpt 4643 ran crn 5039 ‘cfv 5804 (class class class)co 6549 ↑𝑚 cmap 7744 ℕcn 10897 Clsdccld 20630 Nrmcnrm 20924 PNrmcpnrm 20926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-cnv 5046 df-dm 5048 df-rn 5049 df-iota 5768 df-fv 5812 df-ov 6552 df-pnrm 20933 |
This theorem is referenced by: pnrmopn 20957 |
Copyright terms: Public domain | W3C validator |