MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ispnrm Structured version   Visualization version   GIF version

Theorem ispnrm 20953
Description: The property of being perfectly normal. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
ispnrm (𝐽 ∈ PNrm ↔ (𝐽 ∈ Nrm ∧ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽𝑚 ℕ) ↦ ran 𝑓)))
Distinct variable group:   𝑓,𝐽

Proof of Theorem ispnrm
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6103 . . 3 (𝑗 = 𝐽 → (Clsd‘𝑗) = (Clsd‘𝐽))
2 oveq1 6556 . . . . 5 (𝑗 = 𝐽 → (𝑗𝑚 ℕ) = (𝐽𝑚 ℕ))
32mpteq1d 4666 . . . 4 (𝑗 = 𝐽 → (𝑓 ∈ (𝑗𝑚 ℕ) ↦ ran 𝑓) = (𝑓 ∈ (𝐽𝑚 ℕ) ↦ ran 𝑓))
43rneqd 5274 . . 3 (𝑗 = 𝐽 → ran (𝑓 ∈ (𝑗𝑚 ℕ) ↦ ran 𝑓) = ran (𝑓 ∈ (𝐽𝑚 ℕ) ↦ ran 𝑓))
51, 4sseq12d 3597 . 2 (𝑗 = 𝐽 → ((Clsd‘𝑗) ⊆ ran (𝑓 ∈ (𝑗𝑚 ℕ) ↦ ran 𝑓) ↔ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽𝑚 ℕ) ↦ ran 𝑓)))
6 df-pnrm 20933 . 2 PNrm = {𝑗 ∈ Nrm ∣ (Clsd‘𝑗) ⊆ ran (𝑓 ∈ (𝑗𝑚 ℕ) ↦ ran 𝑓)}
75, 6elrab2 3333 1 (𝐽 ∈ PNrm ↔ (𝐽 ∈ Nrm ∧ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽𝑚 ℕ) ↦ ran 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383   = wceq 1475  wcel 1977  wss 3540   cint 4410  cmpt 4643  ran crn 5039  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  cn 10897  Clsdccld 20630  Nrmcnrm 20924  PNrmcpnrm 20926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-cnv 5046  df-dm 5048  df-rn 5049  df-iota 5768  df-fv 5812  df-ov 6552  df-pnrm 20933
This theorem is referenced by:  pnrmnrm  20954  pnrmcld  20956
  Copyright terms: Public domain W3C validator