MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmresg Structured version   Visualization version   GIF version

Theorem pmresg 7771
Description: Elementhood of a restricted function in the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.)
Assertion
Ref Expression
pmresg ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → (𝐹𝐵) ∈ (𝐴pm 𝐵))

Proof of Theorem pmresg
StepHypRef Expression
1 n0i 3879 . . . . 5 (𝐹 ∈ (𝐴pm 𝐶) → ¬ (𝐴pm 𝐶) = ∅)
2 fnpm 7752 . . . . . . 7 pm Fn (V × V)
3 fndm 5904 . . . . . . 7 ( ↑pm Fn (V × V) → dom ↑pm = (V × V))
42, 3ax-mp 5 . . . . . 6 dom ↑pm = (V × V)
54ndmov 6716 . . . . 5 (¬ (𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴pm 𝐶) = ∅)
61, 5nsyl2 141 . . . 4 (𝐹 ∈ (𝐴pm 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V))
76simpld 474 . . 3 (𝐹 ∈ (𝐴pm 𝐶) → 𝐴 ∈ V)
87adantl 481 . 2 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → 𝐴 ∈ V)
9 simpl 472 . 2 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → 𝐵𝑉)
10 elpmi 7762 . . . . . 6 (𝐹 ∈ (𝐴pm 𝐶) → (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐶))
1110simpld 474 . . . . 5 (𝐹 ∈ (𝐴pm 𝐶) → 𝐹:dom 𝐹𝐴)
1211adantl 481 . . . 4 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → 𝐹:dom 𝐹𝐴)
13 inss1 3795 . . . 4 (dom 𝐹𝐵) ⊆ dom 𝐹
14 fssres 5983 . . . 4 ((𝐹:dom 𝐹𝐴 ∧ (dom 𝐹𝐵) ⊆ dom 𝐹) → (𝐹 ↾ (dom 𝐹𝐵)):(dom 𝐹𝐵)⟶𝐴)
1512, 13, 14sylancl 693 . . 3 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → (𝐹 ↾ (dom 𝐹𝐵)):(dom 𝐹𝐵)⟶𝐴)
16 ffun 5961 . . . . 5 (𝐹:dom 𝐹𝐴 → Fun 𝐹)
17 resres 5329 . . . . . 6 ((𝐹 ↾ dom 𝐹) ↾ 𝐵) = (𝐹 ↾ (dom 𝐹𝐵))
18 funrel 5821 . . . . . . 7 (Fun 𝐹 → Rel 𝐹)
19 resdm 5361 . . . . . . 7 (Rel 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹)
20 reseq1 5311 . . . . . . 7 ((𝐹 ↾ dom 𝐹) = 𝐹 → ((𝐹 ↾ dom 𝐹) ↾ 𝐵) = (𝐹𝐵))
2118, 19, 203syl 18 . . . . . 6 (Fun 𝐹 → ((𝐹 ↾ dom 𝐹) ↾ 𝐵) = (𝐹𝐵))
2217, 21syl5eqr 2658 . . . . 5 (Fun 𝐹 → (𝐹 ↾ (dom 𝐹𝐵)) = (𝐹𝐵))
2312, 16, 223syl 18 . . . 4 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → (𝐹 ↾ (dom 𝐹𝐵)) = (𝐹𝐵))
2423feq1d 5943 . . 3 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → ((𝐹 ↾ (dom 𝐹𝐵)):(dom 𝐹𝐵)⟶𝐴 ↔ (𝐹𝐵):(dom 𝐹𝐵)⟶𝐴))
2515, 24mpbid 221 . 2 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → (𝐹𝐵):(dom 𝐹𝐵)⟶𝐴)
26 inss2 3796 . . 3 (dom 𝐹𝐵) ⊆ 𝐵
27 elpm2r 7761 . . 3 (((𝐴 ∈ V ∧ 𝐵𝑉) ∧ ((𝐹𝐵):(dom 𝐹𝐵)⟶𝐴 ∧ (dom 𝐹𝐵) ⊆ 𝐵)) → (𝐹𝐵) ∈ (𝐴pm 𝐵))
2826, 27mpanr2 716 . 2 (((𝐴 ∈ V ∧ 𝐵𝑉) ∧ (𝐹𝐵):(dom 𝐹𝐵)⟶𝐴) → (𝐹𝐵) ∈ (𝐴pm 𝐵))
298, 9, 25, 28syl21anc 1317 1 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → (𝐹𝐵) ∈ (𝐴pm 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  cin 3539  wss 3540  c0 3874   × cxp 5036  dom cdm 5038  cres 5040  Rel wrel 5043  Fun wfun 5798   Fn wfn 5799  wf 5800  (class class class)co 6549  pm cpm 7745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-pm 7747
This theorem is referenced by:  lmres  20914  mbfres  23217  dvnres  23500  cpnres  23506  caures  32726
  Copyright terms: Public domain W3C validator