Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapsub Structured version   Visualization version   GIF version

Theorem pmapsub 34072
Description: The projective map of a Hilbert lattice maps to projective subspaces. Part of Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 17-Oct-2011.)
Hypotheses
Ref Expression
pmapsub.b 𝐵 = (Base‘𝐾)
pmapsub.s 𝑆 = (PSubSp‘𝐾)
pmapsub.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapsub ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑀𝑋) ∈ 𝑆)

Proof of Theorem pmapsub
Dummy variables 𝑞 𝑝 𝑟 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pmapsub.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2610 . . 3 (le‘𝐾) = (le‘𝐾)
3 eqid 2610 . . 3 (Atoms‘𝐾) = (Atoms‘𝐾)
4 pmapsub.m . . 3 𝑀 = (pmap‘𝐾)
51, 2, 3, 4pmapval 34061 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑀𝑋) = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})
6 breq1 4586 . . . . . . . . . . . . . 14 (𝑐 = 𝑝 → (𝑐(le‘𝐾)𝑋𝑝(le‘𝐾)𝑋))
76elrab 3331 . . . . . . . . . . . . 13 (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ↔ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋))
81, 3atbase 33594 . . . . . . . . . . . . . 14 (𝑝 ∈ (Atoms‘𝐾) → 𝑝𝐵)
98anim1i 590 . . . . . . . . . . . . 13 ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) → (𝑝𝐵𝑝(le‘𝐾)𝑋))
107, 9sylbi 206 . . . . . . . . . . . 12 (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} → (𝑝𝐵𝑝(le‘𝐾)𝑋))
11 breq1 4586 . . . . . . . . . . . . . 14 (𝑐 = 𝑞 → (𝑐(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋))
1211elrab 3331 . . . . . . . . . . . . 13 (𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ↔ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)𝑋))
131, 3atbase 33594 . . . . . . . . . . . . . 14 (𝑞 ∈ (Atoms‘𝐾) → 𝑞𝐵)
1413anim1i 590 . . . . . . . . . . . . 13 ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)𝑋) → (𝑞𝐵𝑞(le‘𝐾)𝑋))
1512, 14sylbi 206 . . . . . . . . . . . 12 (𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} → (𝑞𝐵𝑞(le‘𝐾)𝑋))
1610, 15anim12i 588 . . . . . . . . . . 11 ((𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}) → ((𝑝𝐵𝑝(le‘𝐾)𝑋) ∧ (𝑞𝐵𝑞(le‘𝐾)𝑋)))
17 an4 861 . . . . . . . . . . 11 (((𝑝𝐵𝑝(le‘𝐾)𝑋) ∧ (𝑞𝐵𝑞(le‘𝐾)𝑋)) ↔ ((𝑝𝐵𝑞𝐵) ∧ (𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋)))
1816, 17sylib 207 . . . . . . . . . 10 ((𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}) → ((𝑝𝐵𝑞𝐵) ∧ (𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋)))
1918anim2i 591 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) → ((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ ((𝑝𝐵𝑞𝐵) ∧ (𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋))))
201, 3atbase 33594 . . . . . . . . 9 (𝑟 ∈ (Atoms‘𝐾) → 𝑟𝐵)
21 eqid 2610 . . . . . . . . . . . . . . . . 17 (join‘𝐾) = (join‘𝐾)
221, 2, 21latjle12 16885 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Lat ∧ (𝑝𝐵𝑞𝐵𝑋𝐵)) → ((𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋) ↔ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋))
2322biimpd 218 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ (𝑝𝐵𝑞𝐵𝑋𝐵)) → ((𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋))
24233exp2 1277 . . . . . . . . . . . . . 14 (𝐾 ∈ Lat → (𝑝𝐵 → (𝑞𝐵 → (𝑋𝐵 → ((𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋)))))
2524impd 446 . . . . . . . . . . . . 13 (𝐾 ∈ Lat → ((𝑝𝐵𝑞𝐵) → (𝑋𝐵 → ((𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋))))
2625com23 84 . . . . . . . . . . . 12 (𝐾 ∈ Lat → (𝑋𝐵 → ((𝑝𝐵𝑞𝐵) → ((𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋))))
2726imp43 619 . . . . . . . . . . 11 (((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ ((𝑝𝐵𝑞𝐵) ∧ (𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋))) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋)
2827adantr 480 . . . . . . . . . 10 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ ((𝑝𝐵𝑞𝐵) ∧ (𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋))) ∧ 𝑟𝐵) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋)
291, 21latjcl 16874 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ 𝑝𝐵𝑞𝐵) → (𝑝(join‘𝐾)𝑞) ∈ 𝐵)
30293expib 1260 . . . . . . . . . . . . 13 (𝐾 ∈ Lat → ((𝑝𝐵𝑞𝐵) → (𝑝(join‘𝐾)𝑞) ∈ 𝐵))
311, 2lattr 16879 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ (𝑟𝐵 ∧ (𝑝(join‘𝐾)𝑞) ∈ 𝐵𝑋𝐵)) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋))
32313exp2 1277 . . . . . . . . . . . . . 14 (𝐾 ∈ Lat → (𝑟𝐵 → ((𝑝(join‘𝐾)𝑞) ∈ 𝐵 → (𝑋𝐵 → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋)))))
3332com24 93 . . . . . . . . . . . . 13 (𝐾 ∈ Lat → (𝑋𝐵 → ((𝑝(join‘𝐾)𝑞) ∈ 𝐵 → (𝑟𝐵 → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋)))))
3430, 33syl5d 71 . . . . . . . . . . . 12 (𝐾 ∈ Lat → (𝑋𝐵 → ((𝑝𝐵𝑞𝐵) → (𝑟𝐵 → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋)))))
3534imp41 617 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ (𝑝𝐵𝑞𝐵)) ∧ 𝑟𝐵) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋))
3635adantlrr 753 . . . . . . . . . 10 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ ((𝑝𝐵𝑞𝐵) ∧ (𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋))) ∧ 𝑟𝐵) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑟(le‘𝐾)𝑋))
3728, 36mpan2d 706 . . . . . . . . 9 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ ((𝑝𝐵𝑞𝐵) ∧ (𝑝(le‘𝐾)𝑋𝑞(le‘𝐾)𝑋))) ∧ 𝑟𝐵) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟(le‘𝐾)𝑋))
3819, 20, 37syl2an 493 . . . . . . . 8 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟(le‘𝐾)𝑋))
39 simpr 476 . . . . . . . 8 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) ∧ 𝑟 ∈ (Atoms‘𝐾)) → 𝑟 ∈ (Atoms‘𝐾))
4038, 39jctild 564 . . . . . . 7 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)𝑋)))
41 breq1 4586 . . . . . . . 8 (𝑐 = 𝑟 → (𝑐(le‘𝐾)𝑋𝑟(le‘𝐾)𝑋))
4241elrab 3331 . . . . . . 7 (𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ↔ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)𝑋))
4340, 42syl6ibr 241 . . . . . 6 ((((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}))
4443ralrimiva 2949 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑋𝐵) ∧ (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∧ 𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})) → ∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}))
4544ralrimivva 2954 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → ∀𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}))
46 ssrab2 3650 . . . 4 {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ⊆ (Atoms‘𝐾)
4745, 46jctil 558 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → ({𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋})))
48 pmapsub.s . . . . 5 𝑆 = (PSubSp‘𝐾)
492, 21, 3, 48ispsubsp 34049 . . . 4 (𝐾 ∈ Lat → ({𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∈ 𝑆 ↔ ({𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}))))
5049adantr 480 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → ({𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∈ 𝑆 ↔ ({𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋}))))
5147, 50mpbird 246 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)𝑋} ∈ 𝑆)
525, 51eqeltrd 2688 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑀𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  {crab 2900  wss 3540   class class class wbr 4583  cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  joincjn 16767  Latclat 16868  Atomscatm 33568  PSubSpcpsubsp 33800  pmapcpmap 33801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-poset 16769  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-lat 16869  df-ats 33572  df-psubsp 33807  df-pmap 33808
This theorem is referenced by:  hlmod1i  34160  polsubN  34211  pl42lem4N  34286
  Copyright terms: Public domain W3C validator