Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmap1N | Structured version Visualization version GIF version |
Description: Value of the projective map of a Hilbert lattice at lattice unit. Part of Theorem 15.5.1 of [MaedaMaeda] p. 62. (Contributed by NM, 22-Oct-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pmap1.u | ⊢ 1 = (1.‘𝐾) |
pmap1.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pmap1.m | ⊢ 𝑀 = (pmap‘𝐾) |
Ref | Expression |
---|---|
pmap1N | ⊢ (𝐾 ∈ OP → (𝑀‘ 1 ) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2610 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | pmap1.u | . . . 4 ⊢ 1 = (1.‘𝐾) | |
3 | 1, 2 | op1cl 33490 | . . 3 ⊢ (𝐾 ∈ OP → 1 ∈ (Base‘𝐾)) |
4 | eqid 2610 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
5 | pmap1.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | pmap1.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
7 | 1, 4, 5, 6 | pmapval 34061 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 1 ∈ (Base‘𝐾)) → (𝑀‘ 1 ) = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾) 1 }) |
8 | 3, 7 | mpdan 699 | . 2 ⊢ (𝐾 ∈ OP → (𝑀‘ 1 ) = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾) 1 }) |
9 | 1, 5 | atbase 33594 | . . . . 5 ⊢ (𝑝 ∈ 𝐴 → 𝑝 ∈ (Base‘𝐾)) |
10 | 1, 4, 2 | ople1 33496 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑝 ∈ (Base‘𝐾)) → 𝑝(le‘𝐾) 1 ) |
11 | 9, 10 | sylan2 490 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑝 ∈ 𝐴) → 𝑝(le‘𝐾) 1 ) |
12 | 11 | ralrimiva 2949 | . . 3 ⊢ (𝐾 ∈ OP → ∀𝑝 ∈ 𝐴 𝑝(le‘𝐾) 1 ) |
13 | rabid2 3096 | . . 3 ⊢ (𝐴 = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾) 1 } ↔ ∀𝑝 ∈ 𝐴 𝑝(le‘𝐾) 1 ) | |
14 | 12, 13 | sylibr 223 | . 2 ⊢ (𝐾 ∈ OP → 𝐴 = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾) 1 }) |
15 | 8, 14 | eqtr4d 2647 | 1 ⊢ (𝐾 ∈ OP → (𝑀‘ 1 ) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 ∀wral 2896 {crab 2900 class class class wbr 4583 ‘cfv 5804 Basecbs 15695 lecple 15775 1.cp1 16861 OPcops 33477 Atomscatm 33568 pmapcpmap 33801 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-lub 16797 df-p1 16863 df-oposet 33481 df-ats 33572 df-pmap 33808 |
This theorem is referenced by: pmapglb2N 34075 pmapglb2xN 34076 |
Copyright terms: Public domain | W3C validator |