Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapsub Structured version   Unicode version

Theorem pmapsub 33071
Description: The projective map of a Hilbert lattice maps to projective subspaces. Part of Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 17-Oct-2011.)
Hypotheses
Ref Expression
pmapsub.b  |-  B  =  ( Base `  K
)
pmapsub.s  |-  S  =  ( PSubSp `  K )
pmapsub.m  |-  M  =  ( pmap `  K
)
Assertion
Ref Expression
pmapsub  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  ( M `  X
)  e.  S )

Proof of Theorem pmapsub
Dummy variables  q  p  r  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pmapsub.b . . 3  |-  B  =  ( Base `  K
)
2 eqid 2420 . . 3  |-  ( le
`  K )  =  ( le `  K
)
3 eqid 2420 . . 3  |-  ( Atoms `  K )  =  (
Atoms `  K )
4 pmapsub.m . . 3  |-  M  =  ( pmap `  K
)
51, 2, 3, 4pmapval 33060 . 2  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  ( M `  X
)  =  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } )
6 breq1 4420 . . . . . . . . . . . . . 14  |-  ( c  =  p  ->  (
c ( le `  K ) X  <->  p ( le `  K ) X ) )
76elrab 3226 . . . . . . . . . . . . 13  |-  ( p  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X }  <->  ( p  e.  ( Atoms `  K )  /\  p ( le `  K ) X ) )
81, 3atbase 32593 . . . . . . . . . . . . . 14  |-  ( p  e.  ( Atoms `  K
)  ->  p  e.  B )
98anim1i 570 . . . . . . . . . . . . 13  |-  ( ( p  e.  ( Atoms `  K )  /\  p
( le `  K
) X )  -> 
( p  e.  B  /\  p ( le `  K ) X ) )
107, 9sylbi 198 . . . . . . . . . . . 12  |-  ( p  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X }  ->  ( p  e.  B  /\  p
( le `  K
) X ) )
11 breq1 4420 . . . . . . . . . . . . . 14  |-  ( c  =  q  ->  (
c ( le `  K ) X  <->  q ( le `  K ) X ) )
1211elrab 3226 . . . . . . . . . . . . 13  |-  ( q  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X }  <->  ( q  e.  ( Atoms `  K )  /\  q ( le `  K ) X ) )
131, 3atbase 32593 . . . . . . . . . . . . . 14  |-  ( q  e.  ( Atoms `  K
)  ->  q  e.  B )
1413anim1i 570 . . . . . . . . . . . . 13  |-  ( ( q  e.  ( Atoms `  K )  /\  q
( le `  K
) X )  -> 
( q  e.  B  /\  q ( le `  K ) X ) )
1512, 14sylbi 198 . . . . . . . . . . . 12  |-  ( q  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X }  ->  ( q  e.  B  /\  q
( le `  K
) X ) )
1610, 15anim12i 568 . . . . . . . . . . 11  |-  ( ( p  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  /\  q  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }
)  ->  ( (
p  e.  B  /\  p ( le `  K ) X )  /\  ( q  e.  B  /\  q ( le `  K ) X ) ) )
17 an4 831 . . . . . . . . . . 11  |-  ( ( ( p  e.  B  /\  p ( le `  K ) X )  /\  ( q  e.  B  /\  q ( le `  K ) X ) )  <->  ( (
p  e.  B  /\  q  e.  B )  /\  ( p ( le
`  K ) X  /\  q ( le
`  K ) X ) ) )
1816, 17sylib 199 . . . . . . . . . 10  |-  ( ( p  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  /\  q  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }
)  ->  ( (
p  e.  B  /\  q  e.  B )  /\  ( p ( le
`  K ) X  /\  q ( le
`  K ) X ) ) )
1918anim2i 571 . . . . . . . . 9  |-  ( ( ( K  e.  Lat  /\  X  e.  B )  /\  ( p  e. 
{ c  e.  (
Atoms `  K )  |  c ( le `  K ) X }  /\  q  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } ) )  ->  ( ( K  e.  Lat  /\  X  e.  B )  /\  (
( p  e.  B  /\  q  e.  B
)  /\  ( p
( le `  K
) X  /\  q
( le `  K
) X ) ) ) )
201, 3atbase 32593 . . . . . . . . 9  |-  ( r  e.  ( Atoms `  K
)  ->  r  e.  B )
21 eqid 2420 . . . . . . . . . . . . . . . . 17  |-  ( join `  K )  =  (
join `  K )
221, 2, 21latjle12 16252 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  Lat  /\  ( p  e.  B  /\  q  e.  B  /\  X  e.  B
) )  ->  (
( p ( le
`  K ) X  /\  q ( le
`  K ) X )  <->  ( p (
join `  K )
q ) ( le
`  K ) X ) )
2322biimpd 210 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Lat  /\  ( p  e.  B  /\  q  e.  B  /\  X  e.  B
) )  ->  (
( p ( le
`  K ) X  /\  q ( le
`  K ) X )  ->  ( p
( join `  K )
q ) ( le
`  K ) X ) )
24233exp2 1223 . . . . . . . . . . . . . 14  |-  ( K  e.  Lat  ->  (
p  e.  B  -> 
( q  e.  B  ->  ( X  e.  B  ->  ( ( p ( le `  K ) X  /\  q ( le `  K ) X )  ->  (
p ( join `  K
) q ) ( le `  K ) X ) ) ) ) )
2524impd 432 . . . . . . . . . . . . 13  |-  ( K  e.  Lat  ->  (
( p  e.  B  /\  q  e.  B
)  ->  ( X  e.  B  ->  ( ( p ( le `  K ) X  /\  q ( le `  K ) X )  ->  ( p (
join `  K )
q ) ( le
`  K ) X ) ) ) )
2625com23 81 . . . . . . . . . . . 12  |-  ( K  e.  Lat  ->  ( X  e.  B  ->  ( ( p  e.  B  /\  q  e.  B
)  ->  ( (
p ( le `  K ) X  /\  q ( le `  K ) X )  ->  ( p (
join `  K )
q ) ( le
`  K ) X ) ) ) )
2726imp43 598 . . . . . . . . . . 11  |-  ( ( ( K  e.  Lat  /\  X  e.  B )  /\  ( ( p  e.  B  /\  q  e.  B )  /\  (
p ( le `  K ) X  /\  q ( le `  K ) X ) ) )  ->  (
p ( join `  K
) q ) ( le `  K ) X )
2827adantr 466 . . . . . . . . . 10  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
( p  e.  B  /\  q  e.  B
)  /\  ( p
( le `  K
) X  /\  q
( le `  K
) X ) ) )  /\  r  e.  B )  ->  (
p ( join `  K
) q ) ( le `  K ) X )
291, 21latjcl 16241 . . . . . . . . . . . . . 14  |-  ( ( K  e.  Lat  /\  p  e.  B  /\  q  e.  B )  ->  ( p ( join `  K ) q )  e.  B )
30293expib 1208 . . . . . . . . . . . . 13  |-  ( K  e.  Lat  ->  (
( p  e.  B  /\  q  e.  B
)  ->  ( p
( join `  K )
q )  e.  B
) )
311, 2lattr 16246 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Lat  /\  ( r  e.  B  /\  ( p ( join `  K ) q )  e.  B  /\  X  e.  B ) )  -> 
( ( r ( le `  K ) ( p ( join `  K ) q )  /\  ( p (
join `  K )
q ) ( le
`  K ) X )  ->  r ( le `  K ) X ) )
32313exp2 1223 . . . . . . . . . . . . . 14  |-  ( K  e.  Lat  ->  (
r  e.  B  -> 
( ( p (
join `  K )
q )  e.  B  ->  ( X  e.  B  ->  ( ( r ( le `  K ) ( p ( join `  K ) q )  /\  ( p (
join `  K )
q ) ( le
`  K ) X )  ->  r ( le `  K ) X ) ) ) ) )
3332com24 90 . . . . . . . . . . . . 13  |-  ( K  e.  Lat  ->  ( X  e.  B  ->  ( ( p ( join `  K ) q )  e.  B  ->  (
r  e.  B  -> 
( ( r ( le `  K ) ( p ( join `  K ) q )  /\  ( p (
join `  K )
q ) ( le
`  K ) X )  ->  r ( le `  K ) X ) ) ) ) )
3430, 33syl5d 69 . . . . . . . . . . . 12  |-  ( K  e.  Lat  ->  ( X  e.  B  ->  ( ( p  e.  B  /\  q  e.  B
)  ->  ( r  e.  B  ->  ( ( r ( le `  K ) ( p ( join `  K
) q )  /\  ( p ( join `  K ) q ) ( le `  K
) X )  -> 
r ( le `  K ) X ) ) ) ) )
3534imp41 596 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
p  e.  B  /\  q  e.  B )
)  /\  r  e.  B )  ->  (
( r ( le
`  K ) ( p ( join `  K
) q )  /\  ( p ( join `  K ) q ) ( le `  K
) X )  -> 
r ( le `  K ) X ) )
3635adantlrr 725 . . . . . . . . . 10  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
( p  e.  B  /\  q  e.  B
)  /\  ( p
( le `  K
) X  /\  q
( le `  K
) X ) ) )  /\  r  e.  B )  ->  (
( r ( le
`  K ) ( p ( join `  K
) q )  /\  ( p ( join `  K ) q ) ( le `  K
) X )  -> 
r ( le `  K ) X ) )
3728, 36mpan2d 678 . . . . . . . . 9  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
( p  e.  B  /\  q  e.  B
)  /\  ( p
( le `  K
) X  /\  q
( le `  K
) X ) ) )  /\  r  e.  B )  ->  (
r ( le `  K ) ( p ( join `  K
) q )  -> 
r ( le `  K ) X ) )
3819, 20, 37syl2an 479 . . . . . . . 8  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
p  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  /\  q  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }
) )  /\  r  e.  ( Atoms `  K )
)  ->  ( r
( le `  K
) ( p (
join `  K )
q )  ->  r
( le `  K
) X ) )
39 simpr 462 . . . . . . . 8  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
p  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  /\  q  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }
) )  /\  r  e.  ( Atoms `  K )
)  ->  r  e.  ( Atoms `  K )
)
4038, 39jctild 545 . . . . . . 7  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
p  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  /\  q  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }
) )  /\  r  e.  ( Atoms `  K )
)  ->  ( r
( le `  K
) ( p (
join `  K )
q )  ->  (
r  e.  ( Atoms `  K )  /\  r
( le `  K
) X ) ) )
41 breq1 4420 . . . . . . . 8  |-  ( c  =  r  ->  (
c ( le `  K ) X  <->  r ( le `  K ) X ) )
4241elrab 3226 . . . . . . 7  |-  ( r  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X }  <->  ( r  e.  ( Atoms `  K )  /\  r ( le `  K ) X ) )
4340, 42syl6ibr 230 . . . . . 6  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
p  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  /\  q  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }
) )  /\  r  e.  ( Atoms `  K )
)  ->  ( r
( le `  K
) ( p (
join `  K )
q )  ->  r  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }
) )
4443ralrimiva 2837 . . . . 5  |-  ( ( ( K  e.  Lat  /\  X  e.  B )  /\  ( p  e. 
{ c  e.  (
Atoms `  K )  |  c ( le `  K ) X }  /\  q  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } ) )  ->  A. r  e.  (
Atoms `  K ) ( r ( le `  K ) ( p ( join `  K
) q )  -> 
r  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } ) )
4544ralrimivva 2844 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  A. p  e.  {
c  e.  ( Atoms `  K )  |  c ( le `  K
) X } A. q  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X } A. r  e.  ( Atoms `  K )
( r ( le
`  K ) ( p ( join `  K
) q )  -> 
r  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } ) )
46 ssrab2 3543 . . . 4  |-  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  C_  ( Atoms `  K )
4745, 46jctil 539 . . 3  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  ( { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X }  C_  ( Atoms `  K )  /\  A. p  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X } A. q  e. 
{ c  e.  (
Atoms `  K )  |  c ( le `  K ) X } A. r  e.  ( Atoms `  K ) ( r ( le `  K ) ( p ( join `  K
) q )  -> 
r  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } ) ) )
48 pmapsub.s . . . . 5  |-  S  =  ( PSubSp `  K )
492, 21, 3, 48ispsubsp 33048 . . . 4  |-  ( K  e.  Lat  ->  ( { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }  e.  S  <->  ( { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  C_  ( Atoms `  K )  /\  A. p  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } A. q  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X } A. r  e.  ( Atoms `  K ) ( r ( le `  K ) ( p ( join `  K
) q )  -> 
r  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } ) ) ) )
5049adantr 466 . . 3  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  ( { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X }  e.  S  <->  ( {
c  e.  ( Atoms `  K )  |  c ( le `  K
) X }  C_  ( Atoms `  K )  /\  A. p  e.  {
c  e.  ( Atoms `  K )  |  c ( le `  K
) X } A. q  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X } A. r  e.  ( Atoms `  K )
( r ( le
`  K ) ( p ( join `  K
) q )  -> 
r  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } ) ) ) )
5147, 50mpbird 235 . 2  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }  e.  S )
525, 51eqeltrd 2508 1  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  ( M `  X
)  e.  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1867   A.wral 2773   {crab 2777    C_ wss 3433   class class class wbr 4417   ` cfv 5592  (class class class)co 6296   Basecbs 15073   lecple 15149   joincjn 16133   Latclat 16235   Atomscatm 32567   PSubSpcpsubsp 32799   pmapcpmap 32800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-rep 4529  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-ral 2778  df-rex 2779  df-reu 2780  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-op 4000  df-uni 4214  df-iun 4295  df-br 4418  df-opab 4476  df-mpt 4477  df-id 4760  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-riota 6258  df-ov 6299  df-oprab 6300  df-poset 16135  df-lub 16164  df-glb 16165  df-join 16166  df-meet 16167  df-lat 16236  df-ats 32571  df-psubsp 32806  df-pmap 32807
This theorem is referenced by:  hlmod1i  33159  polsubN  33210  pl42lem4N  33285
  Copyright terms: Public domain W3C validator