Step | Hyp | Ref
| Expression |
1 | | ovolshft.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
2 | 1 | ad3antrrr 762 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑𝑚 ℕ)) ∧ 𝐴 ⊆ ∪ ran
((,) ∘ 𝑔)) →
𝐴 ⊆
ℝ) |
3 | | ovolshft.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ ℝ) |
4 | 3 | ad3antrrr 762 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑𝑚 ℕ)) ∧ 𝐴 ⊆ ∪ ran
((,) ∘ 𝑔)) →
𝐶 ∈
ℝ) |
5 | | ovolshft.3 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴}) |
6 | 5 | ad3antrrr 762 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑𝑚 ℕ)) ∧ 𝐴 ⊆ ∪ ran
((,) ∘ 𝑔)) →
𝐵 = {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴}) |
7 | | ovolshft.4 |
. . . . . . 7
⊢ 𝑀 = {𝑦 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐵 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ))} |
8 | | eqid 2610 |
. . . . . . 7
⊢ seq1( + ,
((abs ∘ − ) ∘ 𝑔)) = seq1( + , ((abs ∘ − )
∘ 𝑔)) |
9 | | fveq2 6103 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑛 → (𝑔‘𝑚) = (𝑔‘𝑛)) |
10 | 9 | fveq2d 6107 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑛 → (1st ‘(𝑔‘𝑚)) = (1st ‘(𝑔‘𝑛))) |
11 | 10 | oveq1d 6564 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → ((1st ‘(𝑔‘𝑚)) + 𝐶) = ((1st ‘(𝑔‘𝑛)) + 𝐶)) |
12 | 9 | fveq2d 6107 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑛 → (2nd ‘(𝑔‘𝑚)) = (2nd ‘(𝑔‘𝑛))) |
13 | 12 | oveq1d 6564 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → ((2nd ‘(𝑔‘𝑚)) + 𝐶) = ((2nd ‘(𝑔‘𝑛)) + 𝐶)) |
14 | 11, 13 | opeq12d 4348 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → 〈((1st ‘(𝑔‘𝑚)) + 𝐶), ((2nd ‘(𝑔‘𝑚)) + 𝐶)〉 = 〈((1st
‘(𝑔‘𝑛)) + 𝐶), ((2nd ‘(𝑔‘𝑛)) + 𝐶)〉) |
15 | 14 | cbvmptv 4678 |
. . . . . . 7
⊢ (𝑚 ∈ ℕ ↦
〈((1st ‘(𝑔‘𝑚)) + 𝐶), ((2nd ‘(𝑔‘𝑚)) + 𝐶)〉) = (𝑛 ∈ ℕ ↦
〈((1st ‘(𝑔‘𝑛)) + 𝐶), ((2nd ‘(𝑔‘𝑛)) + 𝐶)〉) |
16 | | simplr 788 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑𝑚 ℕ)) ∧ 𝐴 ⊆ ∪ ran
((,) ∘ 𝑔)) →
𝑔 ∈ (( ≤ ∩
(ℝ × ℝ)) ↑𝑚
ℕ)) |
17 | | reex 9906 |
. . . . . . . . . . 11
⊢ ℝ
∈ V |
18 | 17, 17 | xpex 6860 |
. . . . . . . . . 10
⊢ (ℝ
× ℝ) ∈ V |
19 | 18 | inex2 4728 |
. . . . . . . . 9
⊢ ( ≤
∩ (ℝ × ℝ)) ∈ V |
20 | | nnex 10903 |
. . . . . . . . 9
⊢ ℕ
∈ V |
21 | 19, 20 | elmap 7772 |
. . . . . . . 8
⊢ (𝑔 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑𝑚 ℕ) ↔ 𝑔:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) |
22 | 16, 21 | sylib 207 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑𝑚 ℕ)) ∧ 𝐴 ⊆ ∪ ran
((,) ∘ 𝑔)) →
𝑔:ℕ⟶( ≤
∩ (ℝ × ℝ))) |
23 | | simpr 476 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑𝑚 ℕ)) ∧ 𝐴 ⊆ ∪ ran
((,) ∘ 𝑔)) →
𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) |
24 | 2, 4, 6, 7, 8, 15,
22, 23 | ovolshftlem1 23084 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑𝑚 ℕ)) ∧ 𝐴 ⊆ ∪ ran
((,) ∘ 𝑔)) →
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ∈ 𝑀) |
25 | | eleq1a 2683 |
. . . . . 6
⊢ (sup(ran
seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ∈ 𝑀 → (𝑧 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑔)),
ℝ*, < ) → 𝑧 ∈ 𝑀)) |
26 | 24, 25 | syl 17 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑𝑚 ℕ)) ∧ 𝐴 ⊆ ∪ ran
((,) ∘ 𝑔)) →
(𝑧 = sup(ran seq1( + ,
((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) → 𝑧 ∈ 𝑀)) |
27 | 26 | expimpd 627 |
. . . 4
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑𝑚 ℕ)) → ((𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑔)),
ℝ*, < )) → 𝑧 ∈ 𝑀)) |
28 | 27 | rexlimdva 3013 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ*) →
(∃𝑔 ∈ (( ≤
∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑔)),
ℝ*, < )) → 𝑧 ∈ 𝑀)) |
29 | 28 | ralrimiva 2949 |
. 2
⊢ (𝜑 → ∀𝑧 ∈ ℝ* (∃𝑔 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑𝑚 ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑔)), ℝ*, < )) → 𝑧 ∈ 𝑀)) |
30 | | rabss 3642 |
. 2
⊢ ({𝑧 ∈ ℝ*
∣ ∃𝑔 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑔)),
ℝ*, < ))} ⊆ 𝑀 ↔ ∀𝑧 ∈ ℝ* (∃𝑔 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑𝑚 ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑔)), ℝ*, < )) → 𝑧 ∈ 𝑀)) |
31 | 29, 30 | sylibr 223 |
1
⊢ (𝜑 → {𝑧 ∈ ℝ* ∣
∃𝑔 ∈ (( ≤
∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑔)),
ℝ*, < ))} ⊆ 𝑀) |