Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oduposb | Structured version Visualization version GIF version |
Description: Being a poset is a self-dual property. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
Ref | Expression |
---|---|
odupos.d | ⊢ 𝐷 = (ODual‘𝑂) |
Ref | Expression |
---|---|
oduposb | ⊢ (𝑂 ∈ 𝑉 → (𝑂 ∈ Poset ↔ 𝐷 ∈ Poset)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odupos.d | . . 3 ⊢ 𝐷 = (ODual‘𝑂) | |
2 | 1 | odupos 16958 | . 2 ⊢ (𝑂 ∈ Poset → 𝐷 ∈ Poset) |
3 | eqid 2610 | . . . 4 ⊢ (ODual‘𝐷) = (ODual‘𝐷) | |
4 | 3 | odupos 16958 | . . 3 ⊢ (𝐷 ∈ Poset → (ODual‘𝐷) ∈ Poset) |
5 | fvex 6113 | . . . . 5 ⊢ (ODual‘𝐷) ∈ V | |
6 | 5 | a1i 11 | . . . 4 ⊢ (𝑂 ∈ 𝑉 → (ODual‘𝐷) ∈ V) |
7 | id 22 | . . . 4 ⊢ (𝑂 ∈ 𝑉 → 𝑂 ∈ 𝑉) | |
8 | eqid 2610 | . . . . . . 7 ⊢ (Base‘𝑂) = (Base‘𝑂) | |
9 | 1, 8 | odubas 16956 | . . . . . 6 ⊢ (Base‘𝑂) = (Base‘𝐷) |
10 | 3, 9 | odubas 16956 | . . . . 5 ⊢ (Base‘𝑂) = (Base‘(ODual‘𝐷)) |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝑂 ∈ 𝑉 → (Base‘𝑂) = (Base‘(ODual‘𝐷))) |
12 | eqidd 2611 | . . . 4 ⊢ (𝑂 ∈ 𝑉 → (Base‘𝑂) = (Base‘𝑂)) | |
13 | eqid 2610 | . . . . . . . . . 10 ⊢ (le‘𝑂) = (le‘𝑂) | |
14 | 1, 13 | oduleval 16954 | . . . . . . . . 9 ⊢ ◡(le‘𝑂) = (le‘𝐷) |
15 | 3, 14 | oduleval 16954 | . . . . . . . 8 ⊢ ◡◡(le‘𝑂) = (le‘(ODual‘𝐷)) |
16 | 15 | eqcomi 2619 | . . . . . . 7 ⊢ (le‘(ODual‘𝐷)) = ◡◡(le‘𝑂) |
17 | 16 | breqi 4589 | . . . . . 6 ⊢ (𝑎(le‘(ODual‘𝐷))𝑏 ↔ 𝑎◡◡(le‘𝑂)𝑏) |
18 | vex 3176 | . . . . . . 7 ⊢ 𝑎 ∈ V | |
19 | vex 3176 | . . . . . . 7 ⊢ 𝑏 ∈ V | |
20 | 18, 19 | brcnv 5227 | . . . . . 6 ⊢ (𝑎◡◡(le‘𝑂)𝑏 ↔ 𝑏◡(le‘𝑂)𝑎) |
21 | 19, 18 | brcnv 5227 | . . . . . 6 ⊢ (𝑏◡(le‘𝑂)𝑎 ↔ 𝑎(le‘𝑂)𝑏) |
22 | 17, 20, 21 | 3bitri 285 | . . . . 5 ⊢ (𝑎(le‘(ODual‘𝐷))𝑏 ↔ 𝑎(le‘𝑂)𝑏) |
23 | 22 | a1i 11 | . . . 4 ⊢ ((𝑂 ∈ 𝑉 ∧ (𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂))) → (𝑎(le‘(ODual‘𝐷))𝑏 ↔ 𝑎(le‘𝑂)𝑏)) |
24 | 6, 7, 11, 12, 23 | pospropd 16957 | . . 3 ⊢ (𝑂 ∈ 𝑉 → ((ODual‘𝐷) ∈ Poset ↔ 𝑂 ∈ Poset)) |
25 | 4, 24 | syl5ib 233 | . 2 ⊢ (𝑂 ∈ 𝑉 → (𝐷 ∈ Poset → 𝑂 ∈ Poset)) |
26 | 2, 25 | impbid2 215 | 1 ⊢ (𝑂 ∈ 𝑉 → (𝑂 ∈ Poset ↔ 𝐷 ∈ Poset)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 Vcvv 3173 class class class wbr 4583 ◡ccnv 5037 ‘cfv 5804 Basecbs 15695 lecple 15775 Posetcpo 16763 ODualcodu 16951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-dec 11370 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-ple 15788 df-preset 16751 df-poset 16769 df-odu 16952 |
This theorem is referenced by: odulatb 16966 oduclatb 16967 |
Copyright terms: Public domain | W3C validator |