Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > npomex | Structured version Visualization version GIF version |
Description: A simplifying observation, and an indication of why any attempt to develop a theory of the real numbers without the Axiom of Infinity is doomed to failure: since every member of P is an infinite set, the negation of Infinity implies that P, and hence ℝ, is empty. (Note that this proof, which used the fact that Dedekind cuts have no maximum, could just as well have used that they have no minimum, since they are downward-closed by prcdnq 9694 and nsmallnq 9678). (Contributed by Mario Carneiro, 11-May-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
npomex | ⊢ (𝐴 ∈ P → ω ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3185 | . . . 4 ⊢ (𝐴 ∈ P → 𝐴 ∈ V) | |
2 | prnmax 9696 | . . . . . 6 ⊢ ((𝐴 ∈ P ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦) | |
3 | 2 | ralrimiva 2949 | . . . . 5 ⊢ (𝐴 ∈ P → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦) |
4 | prpssnq 9691 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ P → 𝐴 ⊊ Q) | |
5 | 4 | pssssd 3666 | . . . . . . . . . 10 ⊢ (𝐴 ∈ P → 𝐴 ⊆ Q) |
6 | ltsonq 9670 | . . . . . . . . . 10 ⊢ <Q Or Q | |
7 | soss 4977 | . . . . . . . . . 10 ⊢ (𝐴 ⊆ Q → ( <Q Or Q → <Q Or 𝐴)) | |
8 | 5, 6, 7 | mpisyl 21 | . . . . . . . . 9 ⊢ (𝐴 ∈ P → <Q Or 𝐴) |
9 | 8 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ P ∧ 𝐴 ∈ Fin) → <Q Or 𝐴) |
10 | simpr 476 | . . . . . . . 8 ⊢ ((𝐴 ∈ P ∧ 𝐴 ∈ Fin) → 𝐴 ∈ Fin) | |
11 | prn0 9690 | . . . . . . . . 9 ⊢ (𝐴 ∈ P → 𝐴 ≠ ∅) | |
12 | 11 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ P ∧ 𝐴 ∈ Fin) → 𝐴 ≠ ∅) |
13 | fimax2g 8091 | . . . . . . . 8 ⊢ (( <Q Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <Q 𝑦) | |
14 | 9, 10, 12, 13 | syl3anc 1318 | . . . . . . 7 ⊢ ((𝐴 ∈ P ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <Q 𝑦) |
15 | ralnex 2975 | . . . . . . . . 9 ⊢ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <Q 𝑦 ↔ ¬ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦) | |
16 | 15 | rexbii 3023 | . . . . . . . 8 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <Q 𝑦 ↔ ∃𝑥 ∈ 𝐴 ¬ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦) |
17 | rexnal 2978 | . . . . . . . 8 ⊢ (∃𝑥 ∈ 𝐴 ¬ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ↔ ¬ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦) | |
18 | 16, 17 | bitri 263 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <Q 𝑦 ↔ ¬ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦) |
19 | 14, 18 | sylib 207 | . . . . . 6 ⊢ ((𝐴 ∈ P ∧ 𝐴 ∈ Fin) → ¬ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦) |
20 | 19 | ex 449 | . . . . 5 ⊢ (𝐴 ∈ P → (𝐴 ∈ Fin → ¬ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦)) |
21 | 3, 20 | mt2d 130 | . . . 4 ⊢ (𝐴 ∈ P → ¬ 𝐴 ∈ Fin) |
22 | nelne1 2878 | . . . 4 ⊢ ((𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin) → V ≠ Fin) | |
23 | 1, 21, 22 | syl2anc 691 | . . 3 ⊢ (𝐴 ∈ P → V ≠ Fin) |
24 | 23 | necomd 2837 | . 2 ⊢ (𝐴 ∈ P → Fin ≠ V) |
25 | fineqv 8060 | . . 3 ⊢ (¬ ω ∈ V ↔ Fin = V) | |
26 | 25 | necon1abii 2830 | . 2 ⊢ (Fin ≠ V ↔ ω ∈ V) |
27 | 24, 26 | sylib 207 | 1 ⊢ (𝐴 ∈ P → ω ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∈ wcel 1977 ≠ wne 2780 ∀wral 2896 ∃wrex 2897 Vcvv 3173 ⊆ wss 3540 ∅c0 3874 class class class wbr 4583 Or wor 4958 ωcom 6957 Fincfn 7841 Qcnq 9553 <Q cltq 9559 Pcnp 9560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-omul 7452 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-ni 9573 df-mi 9575 df-lti 9576 df-ltpq 9611 df-enq 9612 df-nq 9613 df-ltnq 9619 df-np 9682 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |