MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  npomex Structured version   Unicode version

Theorem npomex 9404
Description: A simplifying observation, and an indication of why any attempt to develop a theory of the real numbers without the Axiom of Infinity is doomed to failure: since every member of  P. is an infinite set, the negation of Infinity implies that  P., and hence 
RR, is empty. (Note that this proof, which used the fact that Dedekind cuts have no maximum, could just as well have used that they have no minimum, since they are downward-closed by prcdnq 9401 and nsmallnq 9385). (Contributed by Mario Carneiro, 11-May-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) (New usage is discouraged.)
Assertion
Ref Expression
npomex  |-  ( A  e.  P.  ->  om  e.  _V )

Proof of Theorem npomex
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3068 . . . 4  |-  ( A  e.  P.  ->  A  e.  _V )
2 prnmax 9403 . . . . . 6  |-  ( ( A  e.  P.  /\  x  e.  A )  ->  E. y  e.  A  x  <Q  y )
32ralrimiva 2818 . . . . 5  |-  ( A  e.  P.  ->  A. x  e.  A  E. y  e.  A  x  <Q  y )
4 prpssnq 9398 . . . . . . . . . . 11  |-  ( A  e.  P.  ->  A  C. 
Q. )
54pssssd 3540 . . . . . . . . . 10  |-  ( A  e.  P.  ->  A  C_ 
Q. )
6 ltsonq 9377 . . . . . . . . . 10  |-  <Q  Or  Q.
7 soss 4762 . . . . . . . . . 10  |-  ( A 
C_  Q.  ->  (  <Q  Or  Q.  ->  <Q  Or  A
) )
85, 6, 7mpisyl 21 . . . . . . . . 9  |-  ( A  e.  P.  ->  <Q  Or  A )
98adantr 463 . . . . . . . 8  |-  ( ( A  e.  P.  /\  A  e.  Fin )  ->  <Q  Or  A )
10 simpr 459 . . . . . . . 8  |-  ( ( A  e.  P.  /\  A  e.  Fin )  ->  A  e.  Fin )
11 prn0 9397 . . . . . . . . 9  |-  ( A  e.  P.  ->  A  =/=  (/) )
1211adantr 463 . . . . . . . 8  |-  ( ( A  e.  P.  /\  A  e.  Fin )  ->  A  =/=  (/) )
13 fimax2g 7800 . . . . . . . 8  |-  ( ( 
<Q  Or  A  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  -.  x  <Q  y )
149, 10, 12, 13syl3anc 1230 . . . . . . 7  |-  ( ( A  e.  P.  /\  A  e.  Fin )  ->  E. x  e.  A  A. y  e.  A  -.  x  <Q  y )
15 ralnex 2850 . . . . . . . . 9  |-  ( A. y  e.  A  -.  x  <Q  y  <->  -.  E. y  e.  A  x  <Q  y )
1615rexbii 2906 . . . . . . . 8  |-  ( E. x  e.  A  A. y  e.  A  -.  x  <Q  y  <->  E. x  e.  A  -.  E. y  e.  A  x  <Q  y )
17 rexnal 2852 . . . . . . . 8  |-  ( E. x  e.  A  -.  E. y  e.  A  x 
<Q  y  <->  -.  A. x  e.  A  E. y  e.  A  x  <Q  y )
1816, 17bitri 249 . . . . . . 7  |-  ( E. x  e.  A  A. y  e.  A  -.  x  <Q  y  <->  -.  A. x  e.  A  E. y  e.  A  x  <Q  y )
1914, 18sylib 196 . . . . . 6  |-  ( ( A  e.  P.  /\  A  e.  Fin )  ->  -.  A. x  e.  A  E. y  e.  A  x  <Q  y
)
2019ex 432 . . . . 5  |-  ( A  e.  P.  ->  ( A  e.  Fin  ->  -.  A. x  e.  A  E. y  e.  A  x  <Q  y ) )
213, 20mt2d 117 . . . 4  |-  ( A  e.  P.  ->  -.  A  e.  Fin )
22 nelne1 2732 . . . 4  |-  ( ( A  e.  _V  /\  -.  A  e.  Fin )  ->  _V  =/=  Fin )
231, 21, 22syl2anc 659 . . 3  |-  ( A  e.  P.  ->  _V  =/=  Fin )
2423necomd 2674 . 2  |-  ( A  e.  P.  ->  Fin  =/=  _V )
25 fineqv 7770 . . 3  |-  ( -. 
om  e.  _V  <->  Fin  =  _V )
2625necon1abii 2665 . 2  |-  ( Fin 
=/=  _V  <->  om  e.  _V )
2724, 26sylib 196 1  |-  ( A  e.  P.  ->  om  e.  _V )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    e. wcel 1842    =/= wne 2598   A.wral 2754   E.wrex 2755   _Vcvv 3059    C_ wss 3414   (/)c0 3738   class class class wbr 4395    Or wor 4743   omcom 6683   Fincfn 7554   Q.cnq 9260    <Q cltq 9266   P.cnp 9267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-1st 6784  df-2nd 6785  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-1o 7167  df-oadd 7171  df-omul 7172  df-er 7348  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558  df-ni 9280  df-mi 9282  df-lti 9283  df-ltpq 9318  df-enq 9319  df-nq 9320  df-ltnq 9326  df-np 9389
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator