MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoolb Structured version   Visualization version   GIF version

Theorem nmoolb 27010
Description: A lower bound for an operator norm. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoolb.1 𝑋 = (BaseSet‘𝑈)
nmoolb.2 𝑌 = (BaseSet‘𝑊)
nmoolb.l 𝐿 = (normCV𝑈)
nmoolb.m 𝑀 = (normCV𝑊)
nmoolb.3 𝑁 = (𝑈 normOpOLD 𝑊)
Assertion
Ref Expression
nmoolb (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ (𝐴𝑋 ∧ (𝐿𝐴) ≤ 1)) → (𝑀‘(𝑇𝐴)) ≤ (𝑁𝑇))

Proof of Theorem nmoolb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmoolb.2 . . . . . 6 𝑌 = (BaseSet‘𝑊)
2 nmoolb.m . . . . . 6 𝑀 = (normCV𝑊)
31, 2nmosetre 27003 . . . . 5 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))} ⊆ ℝ)
4 ressxr 9962 . . . . 5 ℝ ⊆ ℝ*
53, 4syl6ss 3580 . . . 4 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))} ⊆ ℝ*)
653adant1 1072 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))} ⊆ ℝ*)
7 fveq2 6103 . . . . . . . 8 (𝑦 = 𝐴 → (𝐿𝑦) = (𝐿𝐴))
87breq1d 4593 . . . . . . 7 (𝑦 = 𝐴 → ((𝐿𝑦) ≤ 1 ↔ (𝐿𝐴) ≤ 1))
9 fveq2 6103 . . . . . . . . 9 (𝑦 = 𝐴 → (𝑇𝑦) = (𝑇𝐴))
109fveq2d 6107 . . . . . . . 8 (𝑦 = 𝐴 → (𝑀‘(𝑇𝑦)) = (𝑀‘(𝑇𝐴)))
1110eqeq2d 2620 . . . . . . 7 (𝑦 = 𝐴 → ((𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦)) ↔ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝐴))))
128, 11anbi12d 743 . . . . . 6 (𝑦 = 𝐴 → (((𝐿𝑦) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦))) ↔ ((𝐿𝐴) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝐴)))))
13 eqid 2610 . . . . . . 7 (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝐴))
1413biantru 525 . . . . . 6 ((𝐿𝐴) ≤ 1 ↔ ((𝐿𝐴) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝐴))))
1512, 14syl6bbr 277 . . . . 5 (𝑦 = 𝐴 → (((𝐿𝑦) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦))) ↔ (𝐿𝐴) ≤ 1))
1615rspcev 3282 . . . 4 ((𝐴𝑋 ∧ (𝐿𝐴) ≤ 1) → ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦))))
17 fvex 6113 . . . . 5 (𝑀‘(𝑇𝐴)) ∈ V
18 eqeq1 2614 . . . . . . 7 (𝑥 = (𝑀‘(𝑇𝐴)) → (𝑥 = (𝑀‘(𝑇𝑦)) ↔ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦))))
1918anbi2d 736 . . . . . 6 (𝑥 = (𝑀‘(𝑇𝐴)) → (((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦))) ↔ ((𝐿𝑦) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦)))))
2019rexbidv 3034 . . . . 5 (𝑥 = (𝑀‘(𝑇𝐴)) → (∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦))) ↔ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦)))))
2117, 20elab 3319 . . . 4 ((𝑀‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))} ↔ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇𝑦))))
2216, 21sylibr 223 . . 3 ((𝐴𝑋 ∧ (𝐿𝐴) ≤ 1) → (𝑀‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))})
23 supxrub 12026 . . 3 (({𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))} ⊆ ℝ* ∧ (𝑀‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))}) → (𝑀‘(𝑇𝐴)) ≤ sup({𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))}, ℝ*, < ))
246, 22, 23syl2an 493 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ (𝐴𝑋 ∧ (𝐿𝐴) ≤ 1)) → (𝑀‘(𝑇𝐴)) ≤ sup({𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))}, ℝ*, < ))
25 nmoolb.1 . . . 4 𝑋 = (BaseSet‘𝑈)
26 nmoolb.l . . . 4 𝐿 = (normCV𝑈)
27 nmoolb.3 . . . 4 𝑁 = (𝑈 normOpOLD 𝑊)
2825, 1, 26, 2, 27nmooval 27002 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) = sup({𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))}, ℝ*, < ))
2928adantr 480 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ (𝐴𝑋 ∧ (𝐿𝐴) ≤ 1)) → (𝑁𝑇) = sup({𝑥 ∣ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑦)))}, ℝ*, < ))
3024, 29breqtrrd 4611 1 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ (𝐴𝑋 ∧ (𝐿𝐴) ≤ 1)) → (𝑀‘(𝑇𝐴)) ≤ (𝑁𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  {cab 2596  wrex 2897  wss 3540   class class class wbr 4583  wf 5800  cfv 5804  (class class class)co 6549  supcsup 8229  cr 9814  1c1 9816  *cxr 9952   < clt 9953  cle 9954  NrmCVeccnv 26823  BaseSetcba 26825  normCVcnmcv 26829   normOpOLD cnmoo 26980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-vc 26798  df-nv 26831  df-va 26834  df-ba 26835  df-sm 26836  df-0v 26837  df-nmcv 26839  df-nmoo 26984
This theorem is referenced by:  nmblolbii  27038
  Copyright terms: Public domain W3C validator