Step | Hyp | Ref
| Expression |
1 | | nmoubi.u |
. . . . . 6
⊢ 𝑈 ∈ NrmCVec |
2 | | nmoubi.w |
. . . . . 6
⊢ 𝑊 ∈ NrmCVec |
3 | | nmoubi.1 |
. . . . . . 7
⊢ 𝑋 = (BaseSet‘𝑈) |
4 | | nmoubi.y |
. . . . . . 7
⊢ 𝑌 = (BaseSet‘𝑊) |
5 | | nmoubi.l |
. . . . . . 7
⊢ 𝐿 =
(normCV‘𝑈) |
6 | | nmoubi.m |
. . . . . . 7
⊢ 𝑀 =
(normCV‘𝑊) |
7 | | nmoubi.3 |
. . . . . . 7
⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
8 | 3, 4, 5, 6, 7 | nmooval 27002 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑁‘𝑇) = sup({𝑦 ∣ ∃𝑥 ∈ 𝑋 ((𝐿‘𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇‘𝑥)))}, ℝ*, <
)) |
9 | 1, 2, 8 | mp3an12 1406 |
. . . . 5
⊢ (𝑇:𝑋⟶𝑌 → (𝑁‘𝑇) = sup({𝑦 ∣ ∃𝑥 ∈ 𝑋 ((𝐿‘𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇‘𝑥)))}, ℝ*, <
)) |
10 | 9 | breq1d 4593 |
. . . 4
⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) ≤ 𝐴 ↔ sup({𝑦 ∣ ∃𝑥 ∈ 𝑋 ((𝐿‘𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇‘𝑥)))}, ℝ*, < ) ≤ 𝐴)) |
11 | 10 | adantr 480 |
. . 3
⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝐴 ∈ ℝ*) → ((𝑁‘𝑇) ≤ 𝐴 ↔ sup({𝑦 ∣ ∃𝑥 ∈ 𝑋 ((𝐿‘𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇‘𝑥)))}, ℝ*, < ) ≤ 𝐴)) |
12 | 4, 6 | nmosetre 27003 |
. . . . . 6
⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → {𝑦 ∣ ∃𝑥 ∈ 𝑋 ((𝐿‘𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇‘𝑥)))} ⊆ ℝ) |
13 | 2, 12 | mpan 702 |
. . . . 5
⊢ (𝑇:𝑋⟶𝑌 → {𝑦 ∣ ∃𝑥 ∈ 𝑋 ((𝐿‘𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇‘𝑥)))} ⊆ ℝ) |
14 | | ressxr 9962 |
. . . . 5
⊢ ℝ
⊆ ℝ* |
15 | 13, 14 | syl6ss 3580 |
. . . 4
⊢ (𝑇:𝑋⟶𝑌 → {𝑦 ∣ ∃𝑥 ∈ 𝑋 ((𝐿‘𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇‘𝑥)))} ⊆
ℝ*) |
16 | | supxrleub 12028 |
. . . 4
⊢ (({𝑦 ∣ ∃𝑥 ∈ 𝑋 ((𝐿‘𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇‘𝑥)))} ⊆ ℝ* ∧ 𝐴 ∈ ℝ*)
→ (sup({𝑦 ∣
∃𝑥 ∈ 𝑋 ((𝐿‘𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇‘𝑥)))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝑋 ((𝐿‘𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇‘𝑥)))}𝑧 ≤ 𝐴)) |
17 | 15, 16 | sylan 487 |
. . 3
⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝐴 ∈ ℝ*) →
(sup({𝑦 ∣
∃𝑥 ∈ 𝑋 ((𝐿‘𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇‘𝑥)))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝑋 ((𝐿‘𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇‘𝑥)))}𝑧 ≤ 𝐴)) |
18 | 11, 17 | bitrd 267 |
. 2
⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝐴 ∈ ℝ*) → ((𝑁‘𝑇) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝑋 ((𝐿‘𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇‘𝑥)))}𝑧 ≤ 𝐴)) |
19 | | eqeq1 2614 |
. . . . . 6
⊢ (𝑦 = 𝑧 → (𝑦 = (𝑀‘(𝑇‘𝑥)) ↔ 𝑧 = (𝑀‘(𝑇‘𝑥)))) |
20 | 19 | anbi2d 736 |
. . . . 5
⊢ (𝑦 = 𝑧 → (((𝐿‘𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇‘𝑥))) ↔ ((𝐿‘𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇‘𝑥))))) |
21 | 20 | rexbidv 3034 |
. . . 4
⊢ (𝑦 = 𝑧 → (∃𝑥 ∈ 𝑋 ((𝐿‘𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇‘𝑥))) ↔ ∃𝑥 ∈ 𝑋 ((𝐿‘𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇‘𝑥))))) |
22 | 21 | ralab 3334 |
. . 3
⊢
(∀𝑧 ∈
{𝑦 ∣ ∃𝑥 ∈ 𝑋 ((𝐿‘𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇‘𝑥)))}𝑧 ≤ 𝐴 ↔ ∀𝑧(∃𝑥 ∈ 𝑋 ((𝐿‘𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇‘𝑥))) → 𝑧 ≤ 𝐴)) |
23 | | ralcom4 3197 |
. . . 4
⊢
(∀𝑥 ∈
𝑋 ∀𝑧(((𝐿‘𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇‘𝑥))) → 𝑧 ≤ 𝐴) ↔ ∀𝑧∀𝑥 ∈ 𝑋 (((𝐿‘𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇‘𝑥))) → 𝑧 ≤ 𝐴)) |
24 | | ancomst 467 |
. . . . . . . 8
⊢ ((((𝐿‘𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇‘𝑥))) → 𝑧 ≤ 𝐴) ↔ ((𝑧 = (𝑀‘(𝑇‘𝑥)) ∧ (𝐿‘𝑥) ≤ 1) → 𝑧 ≤ 𝐴)) |
25 | | impexp 461 |
. . . . . . . 8
⊢ (((𝑧 = (𝑀‘(𝑇‘𝑥)) ∧ (𝐿‘𝑥) ≤ 1) → 𝑧 ≤ 𝐴) ↔ (𝑧 = (𝑀‘(𝑇‘𝑥)) → ((𝐿‘𝑥) ≤ 1 → 𝑧 ≤ 𝐴))) |
26 | 24, 25 | bitri 263 |
. . . . . . 7
⊢ ((((𝐿‘𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇‘𝑥))) → 𝑧 ≤ 𝐴) ↔ (𝑧 = (𝑀‘(𝑇‘𝑥)) → ((𝐿‘𝑥) ≤ 1 → 𝑧 ≤ 𝐴))) |
27 | 26 | albii 1737 |
. . . . . 6
⊢
(∀𝑧(((𝐿‘𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇‘𝑥))) → 𝑧 ≤ 𝐴) ↔ ∀𝑧(𝑧 = (𝑀‘(𝑇‘𝑥)) → ((𝐿‘𝑥) ≤ 1 → 𝑧 ≤ 𝐴))) |
28 | | fvex 6113 |
. . . . . . 7
⊢ (𝑀‘(𝑇‘𝑥)) ∈ V |
29 | | breq1 4586 |
. . . . . . . 8
⊢ (𝑧 = (𝑀‘(𝑇‘𝑥)) → (𝑧 ≤ 𝐴 ↔ (𝑀‘(𝑇‘𝑥)) ≤ 𝐴)) |
30 | 29 | imbi2d 329 |
. . . . . . 7
⊢ (𝑧 = (𝑀‘(𝑇‘𝑥)) → (((𝐿‘𝑥) ≤ 1 → 𝑧 ≤ 𝐴) ↔ ((𝐿‘𝑥) ≤ 1 → (𝑀‘(𝑇‘𝑥)) ≤ 𝐴))) |
31 | 28, 30 | ceqsalv 3206 |
. . . . . 6
⊢
(∀𝑧(𝑧 = (𝑀‘(𝑇‘𝑥)) → ((𝐿‘𝑥) ≤ 1 → 𝑧 ≤ 𝐴)) ↔ ((𝐿‘𝑥) ≤ 1 → (𝑀‘(𝑇‘𝑥)) ≤ 𝐴)) |
32 | 27, 31 | bitri 263 |
. . . . 5
⊢
(∀𝑧(((𝐿‘𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇‘𝑥))) → 𝑧 ≤ 𝐴) ↔ ((𝐿‘𝑥) ≤ 1 → (𝑀‘(𝑇‘𝑥)) ≤ 𝐴)) |
33 | 32 | ralbii 2963 |
. . . 4
⊢
(∀𝑥 ∈
𝑋 ∀𝑧(((𝐿‘𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇‘𝑥))) → 𝑧 ≤ 𝐴) ↔ ∀𝑥 ∈ 𝑋 ((𝐿‘𝑥) ≤ 1 → (𝑀‘(𝑇‘𝑥)) ≤ 𝐴)) |
34 | | r19.23v 3005 |
. . . . 5
⊢
(∀𝑥 ∈
𝑋 (((𝐿‘𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇‘𝑥))) → 𝑧 ≤ 𝐴) ↔ (∃𝑥 ∈ 𝑋 ((𝐿‘𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇‘𝑥))) → 𝑧 ≤ 𝐴)) |
35 | 34 | albii 1737 |
. . . 4
⊢
(∀𝑧∀𝑥 ∈ 𝑋 (((𝐿‘𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇‘𝑥))) → 𝑧 ≤ 𝐴) ↔ ∀𝑧(∃𝑥 ∈ 𝑋 ((𝐿‘𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇‘𝑥))) → 𝑧 ≤ 𝐴)) |
36 | 23, 33, 35 | 3bitr3i 289 |
. . 3
⊢
(∀𝑥 ∈
𝑋 ((𝐿‘𝑥) ≤ 1 → (𝑀‘(𝑇‘𝑥)) ≤ 𝐴) ↔ ∀𝑧(∃𝑥 ∈ 𝑋 ((𝐿‘𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇‘𝑥))) → 𝑧 ≤ 𝐴)) |
37 | 22, 36 | bitr4i 266 |
. 2
⊢
(∀𝑧 ∈
{𝑦 ∣ ∃𝑥 ∈ 𝑋 ((𝐿‘𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇‘𝑥)))}𝑧 ≤ 𝐴 ↔ ∀𝑥 ∈ 𝑋 ((𝐿‘𝑥) ≤ 1 → (𝑀‘(𝑇‘𝑥)) ≤ 𝐴)) |
38 | 18, 37 | syl6bb 275 |
1
⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝐴 ∈ ℝ*) → ((𝑁‘𝑇) ≤ 𝐴 ↔ ∀𝑥 ∈ 𝑋 ((𝐿‘𝑥) ≤ 1 → (𝑀‘(𝑇‘𝑥)) ≤ 𝐴))) |