Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltsubsubaddltsub | Structured version Visualization version GIF version |
Description: If the result of subtracting two numbers is greater than a number, the result of adding one of these subtracted numbers to the number is less than the result of subtracting the other subtracted number only. (Contributed by Alexander van der Vekens, 9-Jun-2018.) |
Ref | Expression |
---|---|
ltsubsubaddltsub | ⊢ ((𝐽 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → (𝐽 < ((𝐿 − 𝑀) − 𝑁) ↔ (𝐽 + 𝑀) < (𝐿 − 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 472 | . . 3 ⊢ ((𝐽 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → 𝐽 ∈ ℝ) | |
2 | resubcl 10224 | . . . . . 6 ⊢ ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐿 − 𝑀) ∈ ℝ) | |
3 | 2 | 3adant3 1074 | . . . . 5 ⊢ ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐿 − 𝑀) ∈ ℝ) |
4 | simp3 1056 | . . . . 5 ⊢ ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ∈ ℝ) | |
5 | 3, 4 | resubcld 10337 | . . . 4 ⊢ ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝐿 − 𝑀) − 𝑁) ∈ ℝ) |
6 | 5 | adantl 481 | . . 3 ⊢ ((𝐽 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → ((𝐿 − 𝑀) − 𝑁) ∈ ℝ) |
7 | simpr2 1061 | . . 3 ⊢ ((𝐽 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → 𝑀 ∈ ℝ) | |
8 | 1, 6, 7 | ltadd1d 10499 | . 2 ⊢ ((𝐽 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → (𝐽 < ((𝐿 − 𝑀) − 𝑁) ↔ (𝐽 + 𝑀) < (((𝐿 − 𝑀) − 𝑁) + 𝑀))) |
9 | recn 9905 | . . . . 5 ⊢ (𝐿 ∈ ℝ → 𝐿 ∈ ℂ) | |
10 | recn 9905 | . . . . 5 ⊢ (𝑀 ∈ ℝ → 𝑀 ∈ ℂ) | |
11 | recn 9905 | . . . . 5 ⊢ (𝑁 ∈ ℝ → 𝑁 ∈ ℂ) | |
12 | nnpcan 10183 | . . . . 5 ⊢ ((𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (((𝐿 − 𝑀) − 𝑁) + 𝑀) = (𝐿 − 𝑁)) | |
13 | 9, 10, 11, 12 | syl3an 1360 | . . . 4 ⊢ ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝐿 − 𝑀) − 𝑁) + 𝑀) = (𝐿 − 𝑁)) |
14 | 13 | adantl 481 | . . 3 ⊢ ((𝐽 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → (((𝐿 − 𝑀) − 𝑁) + 𝑀) = (𝐿 − 𝑁)) |
15 | 14 | breq2d 4595 | . 2 ⊢ ((𝐽 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → ((𝐽 + 𝑀) < (((𝐿 − 𝑀) − 𝑁) + 𝑀) ↔ (𝐽 + 𝑀) < (𝐿 − 𝑁))) |
16 | 8, 15 | bitrd 267 | 1 ⊢ ((𝐽 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → (𝐽 < ((𝐿 − 𝑀) − 𝑁) ↔ (𝐽 + 𝑀) < (𝐿 − 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 class class class wbr 4583 (class class class)co 6549 ℂcc 9813 ℝcr 9814 + caddc 9818 < clt 9953 − cmin 10145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-po 4959 df-so 4960 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-ltxr 9958 df-sub 10147 df-neg 10148 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |