Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1eq Structured version   Visualization version   GIF version

Theorem lo1eq 14147
 Description: Two functions that are eventually equal to one another are eventually bounded if one of them is. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
lo1eq.1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
lo1eq.2 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
lo1eq.3 (𝜑𝐷 ∈ ℝ)
lo1eq.4 ((𝜑 ∧ (𝑥𝐴𝐷𝑥)) → 𝐵 = 𝐶)
Assertion
Ref Expression
lo1eq (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ (𝑥𝐴𝐶) ∈ ≤𝑂(1)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem lo1eq
StepHypRef Expression
1 lo1dm 14098 . . 3 ((𝑥𝐴𝐵) ∈ ≤𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ)
2 eqid 2610 . . . . 5 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3 lo1eq.1 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
42, 3dmmptd 5937 . . . 4 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
54sseq1d 3595 . . 3 (𝜑 → (dom (𝑥𝐴𝐵) ⊆ ℝ ↔ 𝐴 ⊆ ℝ))
61, 5syl5ib 233 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) → 𝐴 ⊆ ℝ))
7 lo1dm 14098 . . 3 ((𝑥𝐴𝐶) ∈ ≤𝑂(1) → dom (𝑥𝐴𝐶) ⊆ ℝ)
8 eqid 2610 . . . . 5 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
9 lo1eq.2 . . . . 5 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
108, 9dmmptd 5937 . . . 4 (𝜑 → dom (𝑥𝐴𝐶) = 𝐴)
1110sseq1d 3595 . . 3 (𝜑 → (dom (𝑥𝐴𝐶) ⊆ ℝ ↔ 𝐴 ⊆ ℝ))
127, 11syl5ib 233 . 2 (𝜑 → ((𝑥𝐴𝐶) ∈ ≤𝑂(1) → 𝐴 ⊆ ℝ))
13 simpr 476 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → 𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)))
14 elin 3758 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↔ (𝑥𝐴𝑥 ∈ (𝐷[,)+∞)))
1513, 14sylib 207 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → (𝑥𝐴𝑥 ∈ (𝐷[,)+∞)))
1615simpld 474 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → 𝑥𝐴)
1715simprd 478 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → 𝑥 ∈ (𝐷[,)+∞))
18 lo1eq.3 . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ ℝ)
19 elicopnf 12140 . . . . . . . . . . . . . . . 16 (𝐷 ∈ ℝ → (𝑥 ∈ (𝐷[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐷𝑥)))
2018, 19syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ (𝐷[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐷𝑥)))
2120biimpa 500 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐷[,)+∞)) → (𝑥 ∈ ℝ ∧ 𝐷𝑥))
2217, 21syldan 486 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → (𝑥 ∈ ℝ ∧ 𝐷𝑥))
2322simprd 478 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → 𝐷𝑥)
2416, 23jca 553 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → (𝑥𝐴𝐷𝑥))
25 lo1eq.4 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝐷𝑥)) → 𝐵 = 𝐶)
2624, 25syldan 486 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → 𝐵 = 𝐶)
2726mpteq2dva 4672 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↦ 𝐵) = (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↦ 𝐶))
28 inss1 3795 . . . . . . . . . 10 (𝐴 ∩ (𝐷[,)+∞)) ⊆ 𝐴
29 resmpt 5369 . . . . . . . . . 10 ((𝐴 ∩ (𝐷[,)+∞)) ⊆ 𝐴 → ((𝑥𝐴𝐵) ↾ (𝐴 ∩ (𝐷[,)+∞))) = (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↦ 𝐵))
3028, 29ax-mp 5 . . . . . . . . 9 ((𝑥𝐴𝐵) ↾ (𝐴 ∩ (𝐷[,)+∞))) = (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↦ 𝐵)
31 resmpt 5369 . . . . . . . . . 10 ((𝐴 ∩ (𝐷[,)+∞)) ⊆ 𝐴 → ((𝑥𝐴𝐶) ↾ (𝐴 ∩ (𝐷[,)+∞))) = (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↦ 𝐶))
3228, 31ax-mp 5 . . . . . . . . 9 ((𝑥𝐴𝐶) ↾ (𝐴 ∩ (𝐷[,)+∞))) = (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↦ 𝐶)
3327, 30, 323eqtr4g 2669 . . . . . . . 8 (𝜑 → ((𝑥𝐴𝐵) ↾ (𝐴 ∩ (𝐷[,)+∞))) = ((𝑥𝐴𝐶) ↾ (𝐴 ∩ (𝐷[,)+∞))))
34 resres 5329 . . . . . . . 8 (((𝑥𝐴𝐵) ↾ 𝐴) ↾ (𝐷[,)+∞)) = ((𝑥𝐴𝐵) ↾ (𝐴 ∩ (𝐷[,)+∞)))
35 resres 5329 . . . . . . . 8 (((𝑥𝐴𝐶) ↾ 𝐴) ↾ (𝐷[,)+∞)) = ((𝑥𝐴𝐶) ↾ (𝐴 ∩ (𝐷[,)+∞)))
3633, 34, 353eqtr4g 2669 . . . . . . 7 (𝜑 → (((𝑥𝐴𝐵) ↾ 𝐴) ↾ (𝐷[,)+∞)) = (((𝑥𝐴𝐶) ↾ 𝐴) ↾ (𝐷[,)+∞)))
37 ssid 3587 . . . . . . . 8 𝐴𝐴
38 resmpt 5369 . . . . . . . 8 (𝐴𝐴 → ((𝑥𝐴𝐵) ↾ 𝐴) = (𝑥𝐴𝐵))
39 reseq1 5311 . . . . . . . 8 (((𝑥𝐴𝐵) ↾ 𝐴) = (𝑥𝐴𝐵) → (((𝑥𝐴𝐵) ↾ 𝐴) ↾ (𝐷[,)+∞)) = ((𝑥𝐴𝐵) ↾ (𝐷[,)+∞)))
4037, 38, 39mp2b 10 . . . . . . 7 (((𝑥𝐴𝐵) ↾ 𝐴) ↾ (𝐷[,)+∞)) = ((𝑥𝐴𝐵) ↾ (𝐷[,)+∞))
41 resmpt 5369 . . . . . . . 8 (𝐴𝐴 → ((𝑥𝐴𝐶) ↾ 𝐴) = (𝑥𝐴𝐶))
42 reseq1 5311 . . . . . . . 8 (((𝑥𝐴𝐶) ↾ 𝐴) = (𝑥𝐴𝐶) → (((𝑥𝐴𝐶) ↾ 𝐴) ↾ (𝐷[,)+∞)) = ((𝑥𝐴𝐶) ↾ (𝐷[,)+∞)))
4337, 41, 42mp2b 10 . . . . . . 7 (((𝑥𝐴𝐶) ↾ 𝐴) ↾ (𝐷[,)+∞)) = ((𝑥𝐴𝐶) ↾ (𝐷[,)+∞))
4436, 40, 433eqtr3g 2667 . . . . . 6 (𝜑 → ((𝑥𝐴𝐵) ↾ (𝐷[,)+∞)) = ((𝑥𝐴𝐶) ↾ (𝐷[,)+∞)))
4544eleq1d 2672 . . . . 5 (𝜑 → (((𝑥𝐴𝐵) ↾ (𝐷[,)+∞)) ∈ ≤𝑂(1) ↔ ((𝑥𝐴𝐶) ↾ (𝐷[,)+∞)) ∈ ≤𝑂(1)))
4645adantr 480 . . . 4 ((𝜑𝐴 ⊆ ℝ) → (((𝑥𝐴𝐵) ↾ (𝐷[,)+∞)) ∈ ≤𝑂(1) ↔ ((𝑥𝐴𝐶) ↾ (𝐷[,)+∞)) ∈ ≤𝑂(1)))
473, 2fmptd 6292 . . . . . 6 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ)
4847adantr 480 . . . . 5 ((𝜑𝐴 ⊆ ℝ) → (𝑥𝐴𝐵):𝐴⟶ℝ)
49 simpr 476 . . . . 5 ((𝜑𝐴 ⊆ ℝ) → 𝐴 ⊆ ℝ)
5018adantr 480 . . . . 5 ((𝜑𝐴 ⊆ ℝ) → 𝐷 ∈ ℝ)
5148, 49, 50lo1resb 14143 . . . 4 ((𝜑𝐴 ⊆ ℝ) → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ((𝑥𝐴𝐵) ↾ (𝐷[,)+∞)) ∈ ≤𝑂(1)))
529, 8fmptd 6292 . . . . . 6 (𝜑 → (𝑥𝐴𝐶):𝐴⟶ℝ)
5352adantr 480 . . . . 5 ((𝜑𝐴 ⊆ ℝ) → (𝑥𝐴𝐶):𝐴⟶ℝ)
5453, 49, 50lo1resb 14143 . . . 4 ((𝜑𝐴 ⊆ ℝ) → ((𝑥𝐴𝐶) ∈ ≤𝑂(1) ↔ ((𝑥𝐴𝐶) ↾ (𝐷[,)+∞)) ∈ ≤𝑂(1)))
5546, 51, 543bitr4d 299 . . 3 ((𝜑𝐴 ⊆ ℝ) → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ (𝑥𝐴𝐶) ∈ ≤𝑂(1)))
5655ex 449 . 2 (𝜑 → (𝐴 ⊆ ℝ → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ (𝑥𝐴𝐶) ∈ ≤𝑂(1))))
576, 12, 56pm5.21ndd 368 1 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ (𝑥𝐴𝐶) ∈ ≤𝑂(1)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ∩ cin 3539   ⊆ wss 3540   class class class wbr 4583   ↦ cmpt 4643  dom cdm 5038   ↾ cres 5040  ⟶wf 5800  (class class class)co 6549  ℝcr 9814  +∞cpnf 9950   ≤ cle 9954  [,)cico 12048  ≤𝑂(1)clo1 14066 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-ico 12052  df-lo1 14070 This theorem is referenced by:  o1eq  14149
 Copyright terms: Public domain W3C validator