Step | Hyp | Ref
| Expression |
1 | | lnopco.1 |
. . . 4
⊢ 𝑆 ∈ LinOp |
2 | 1 | lnopfi 28212 |
. . 3
⊢ 𝑆: ℋ⟶
ℋ |
3 | | lnopco.2 |
. . . 4
⊢ 𝑇 ∈ LinOp |
4 | 3 | lnopfi 28212 |
. . 3
⊢ 𝑇: ℋ⟶
ℋ |
5 | 2, 4 | hocofi 28009 |
. 2
⊢ (𝑆 ∘ 𝑇): ℋ⟶ ℋ |
6 | 3 | lnopli 28211 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧))) |
7 | 6 | fveq2d 6107 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑆‘(𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧))) = (𝑆‘((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)))) |
8 | | id 22 |
. . . . . . . 8
⊢ (𝑥 ∈ ℂ → 𝑥 ∈
ℂ) |
9 | 4 | ffvelrni 6266 |
. . . . . . . 8
⊢ (𝑦 ∈ ℋ → (𝑇‘𝑦) ∈ ℋ) |
10 | 4 | ffvelrni 6266 |
. . . . . . . 8
⊢ (𝑧 ∈ ℋ → (𝑇‘𝑧) ∈ ℋ) |
11 | 1 | lnopli 28211 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℂ ∧ (𝑇‘𝑦) ∈ ℋ ∧ (𝑇‘𝑧) ∈ ℋ) → (𝑆‘((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧))) = ((𝑥 ·ℎ (𝑆‘(𝑇‘𝑦))) +ℎ (𝑆‘(𝑇‘𝑧)))) |
12 | 8, 9, 10, 11 | syl3an 1360 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑆‘((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧))) = ((𝑥 ·ℎ (𝑆‘(𝑇‘𝑦))) +ℎ (𝑆‘(𝑇‘𝑧)))) |
13 | 7, 12 | eqtrd 2644 |
. . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑆‘(𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧))) = ((𝑥 ·ℎ (𝑆‘(𝑇‘𝑦))) +ℎ (𝑆‘(𝑇‘𝑧)))) |
14 | 13 | 3expa 1257 |
. . . . 5
⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝑆‘(𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧))) = ((𝑥 ·ℎ (𝑆‘(𝑇‘𝑦))) +ℎ (𝑆‘(𝑇‘𝑧)))) |
15 | | hvmulcl 27254 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥
·ℎ 𝑦) ∈ ℋ) |
16 | | hvaddcl 27253 |
. . . . . . 7
⊢ (((𝑥
·ℎ 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 ·ℎ 𝑦) +ℎ 𝑧) ∈
ℋ) |
17 | 15, 16 | sylan 487 |
. . . . . 6
⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥
·ℎ 𝑦) +ℎ 𝑧) ∈ ℋ) |
18 | 2, 4 | hocoi 28007 |
. . . . . 6
⊢ (((𝑥
·ℎ 𝑦) +ℎ 𝑧) ∈ ℋ → ((𝑆 ∘ 𝑇)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = (𝑆‘(𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)))) |
19 | 17, 18 | syl 17 |
. . . . 5
⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑆 ∘ 𝑇)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = (𝑆‘(𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)))) |
20 | 2, 4 | hocoi 28007 |
. . . . . . . 8
⊢ (𝑦 ∈ ℋ → ((𝑆 ∘ 𝑇)‘𝑦) = (𝑆‘(𝑇‘𝑦))) |
21 | 20 | oveq2d 6565 |
. . . . . . 7
⊢ (𝑦 ∈ ℋ → (𝑥
·ℎ ((𝑆 ∘ 𝑇)‘𝑦)) = (𝑥 ·ℎ (𝑆‘(𝑇‘𝑦)))) |
22 | 21 | adantl 481 |
. . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥
·ℎ ((𝑆 ∘ 𝑇)‘𝑦)) = (𝑥 ·ℎ (𝑆‘(𝑇‘𝑦)))) |
23 | 2, 4 | hocoi 28007 |
. . . . . 6
⊢ (𝑧 ∈ ℋ → ((𝑆 ∘ 𝑇)‘𝑧) = (𝑆‘(𝑇‘𝑧))) |
24 | 22, 23 | oveqan12d 6568 |
. . . . 5
⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥
·ℎ ((𝑆 ∘ 𝑇)‘𝑦)) +ℎ ((𝑆 ∘ 𝑇)‘𝑧)) = ((𝑥 ·ℎ (𝑆‘(𝑇‘𝑦))) +ℎ (𝑆‘(𝑇‘𝑧)))) |
25 | 14, 19, 24 | 3eqtr4d 2654 |
. . . 4
⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑆 ∘ 𝑇)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ ((𝑆 ∘ 𝑇)‘𝑦)) +ℎ ((𝑆 ∘ 𝑇)‘𝑧))) |
26 | 25 | 3impa 1251 |
. . 3
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑆 ∘ 𝑇)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ ((𝑆 ∘ 𝑇)‘𝑦)) +ℎ ((𝑆 ∘ 𝑇)‘𝑧))) |
27 | 26 | rgen3 2959 |
. 2
⊢
∀𝑥 ∈
ℂ ∀𝑦 ∈
ℋ ∀𝑧 ∈
ℋ ((𝑆 ∘ 𝑇)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ ((𝑆 ∘ 𝑇)‘𝑦)) +ℎ ((𝑆 ∘ 𝑇)‘𝑧)) |
28 | | ellnop 28101 |
. 2
⊢ ((𝑆 ∘ 𝑇) ∈ LinOp ↔ ((𝑆 ∘ 𝑇): ℋ⟶ ℋ ∧
∀𝑥 ∈ ℂ
∀𝑦 ∈ ℋ
∀𝑧 ∈ ℋ
((𝑆 ∘ 𝑇)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ ((𝑆 ∘ 𝑇)‘𝑦)) +ℎ ((𝑆 ∘ 𝑇)‘𝑧)))) |
29 | 5, 27, 28 | mpbir2an 957 |
1
⊢ (𝑆 ∘ 𝑇) ∈ LinOp |